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Evolution of the Copernicus DEM: 
beyond today’s elevation data with WorldDEM 

Neo 
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hanne.paschko@airbus.com 
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Virginia Herrera  
Airbus DS, SAR Programs Friedrichshafen, Germany 

virginia.herrera@airbus.com  

Abstract— The Copernicus DEM has established a programme-
level reference for Digital Elevation Models, serving all 
Copernicus elements (Space, Services and In-situ) over a large 
array of Earth- Observation based applications. Originating from 
the TanDEM-X SAR-mission, interferometric data have been 
acquired between December 2010 and January 2015 to process a 
global, homogenous and highly accurate Digital Surface Model 
(DSM), which has been made available to ESA and its partners in 
a 10m resolution version. The 30m and 90m resolution versions 
have been made available to the general public. The value-adding 
of the TanDEM-X DEM (removal of terrain artefacts and 
hydrologic editing) conducted by Airbus created the 
WorldDEMTM dataset, which served as input for Copernicus 
DEM. 

Based on the source data of the Copernicus DEM (WorldDEM) 
and fresh data acquisitions (2017-2020), a new generation of global 
DEM has been developed and validated which show improvements 
in actuality (2017-2020) and level of detail due to its new grid 
spacing of 5m. The global SAR-based DSM is commercially 
available as “WorldDEM Neo” with fully automated production 
processes, so as the DTM that is currently in production. 
Furthermore, known deficiencies in WorldDEM Neo caused by 
side-looking SAR (layover, shadow, high-rise buildings) are 
compensated through advanced processing. This comprises the 
local/regional integration of high- resolution DEM data from 
evolving techniques such as SAR image reconstruction or from 
optical sensors (primarily for DSM). 

This document will focus on the processes to create an up-to-date 
high-resolution DSM/DTM on a global scale and the prospect of 
serving further applications in the Copernicus / Sentinel ecosystem. 

I. INTRODUCTION

Digital elevation information (DSM, DTM) are an essential 
information source for various scientific and commercial 
applications. The Copernicus DEM & WorldDEM (acquired 
2010-2015), ALOS World 3D (2006-2011) and SRTM (2000) 
are well-established DSMs though the data is not up-to-date. As 
Earth’s surface is very dynamic, current height information is as 
important as a high degree of precision. A huge challenge for 
global elevation information is the transformation of 

raw/unedited elevation information into edited, analysis-ready 
elevation information. 

In section II, a fully automated production process for global 
DSM data starting with unedited TanDEM-X Change DEM 
(German Space Agency; DLR) is described. This comprises the 
automated compensation of artefacts as well as hydro editing to 
produce the global WorldDEM Neo dataset. Section III provides 
the results of a statistical analysis based on ICESat-2 ATL08 
point data and a visual example of WorldDEM Neo. An outlook 
on the subsequent integration of alternate DEM data to improve 
WorldDEM Neo and further processing to derive global DTM 
data is provided in section IV. 

II. METHODS 

A. Input Datasets

1) WorldDEM as input for Copernicus DEM

The current version of the Copernicus DEM is primarily
derived from the commercial WorldDEM offered by Airbus DS 
with substitutions of the nominal fill sources by national DEM 
data for the area of Norway and Spain. WorldDEM is based on 
the unedited version of the TanDEM-X DEM (DLR). The 
generation process and performance of the TanDEM-X DEM is 
described in [1]. A description of the editing process to create 
the WorldDEM is available in [2]. The technical specification of 
the WorldDEM dataset is provided hereafter. 

TABLE I. WORLDDEM PARAMETERS 

Acqusition timeframe Dec. 2010 – Jan. 2015 
Coverage Global / pole-to-pole 
Projection Geographic coordinates 
Data Tiling 1° x 1° 
Coordinate 
reference 

system 

horizontal WGS84-G1150 

vertical EGM2008 

Pixel 
spacing 

latitude (Y) 0.4” (~12m) 
longitude (X) 0.4” – 4.0” (~12m, dep. on latitude) 

https://doi.org/10.5281/zenodo.7875365
mailto:ernest.fahrland@airbus.com
mailto:hanne.paschko@airbus.com
mailto:henning.schrader@airbus.com
mailto:virginia.herrera@airbus.com
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2) TanDEM-X Change rawDEM scenes

DLR and Airbus DS decided in 2016 to acquire an additional 
global coverage of bi-static DEM data, after finishing the 
TanDEM-X DEM. The looking direction of the so-called 
Change DEM acquisitions is opposite to the one from the 
nominal TanDEM-X data (acquired 2010-2015). The across-
track overlap of the new DEM scenes is ~4-5 km (Figure 2) and 
the interferometric processing is based on the delta-phase 
algorithm described in [3]. Although the interferometric process 
is supported by WorldDEM (~30m), the new phase (height) 
values are independent. The ground sampling distance of the 
Change rawDEM scenes is 0,2” (~5-6m). To preserve the level 
of detail of the Change rawDEM scenes best, no additional 
process step is performed by DLR (mosaicking and calibration, 
MCP) as this would create a DEM with again 0,4” ground 
sampling distance (~12m). The Change raw DEM data is 
unedited. 

Figure 1. TanDEM-X Change DEM coverage and DEM scene 
overlap 

B. WorldDEM Neo production process

1)Process overview

The production process creates an analysis-ready DSM
dataset in a short timeframe. User interaction to mitigate 
artefacts in the unedited Change rawDEM data is not applied and 
a fully automated production process in a high performance 
computing environment has been established. The following 
Figure 2 provides a graphical overview of the process structure. 

Figure 2. Global coverage of WorldDEM / Copernicus DEM 

2) Mosaicking of TanDEM-X Change rawDEM scenes

After data transfer from DLR and database import at Airbus, 
the Change rawDEM scenes are mosaicked. Overlap regions of 
the scenes (see zoom caption in Figure 2) are processed with 
priority on the more up-to-date scene. A feathering algorithm at 
the scene borders for a distance of 10 pixels ensures a 
consistent and homogenous representation of the final 
WorldDEM Neo. Auxiliary information required for 
subsequent processes and/or the final product comprise an 

incidence angle mask (IAM), height error mask (HEM), radar 
amplitude mosaic (AMP) and source scene mask (SCM). 

3) DEM Fusion: Change rawDEM mosaic and WorldDEM

As the Change rawDEM mosaic represents unedited height
information, a compensation of local artefacts based on DEM 
fusion has been developed. Reliable and fresh height 
information from the Change DEM acquisitions is preserved as 
much as possible, whereas unreliable height information is 
either compensated via alternate height information (weighted 
DEM fusion with WorldDEM) or edited acc. to pre-defined 
rules (hydro editing). A quality-based fusion principle based on 
the DEM height error is described in [4] and served as basis for 
process development. The height error is available in form of 
the standard deviation on a pixel basis and derived from the 
radar coherence and geometrical considerations. The weight of 
the Change rawDEM mosaic is derived with the following 
procedure. 

Eq. 1 

The pixel-based height errors for the Change rawDEM and 
WorldDEM are represented by σHEMCD resp. σHEMWD. The 
absolute height difference between both DEMs is represented 
by |∆Z|. The stretch factor s for σHEMWD is based on geometrical 
considerations (local slope gradient, incidence angle (IAM) incl. 
variable margin), the absolute height difference |∆Z| and three 
additional parameters. The following Figure 3 displays the 
stretch factor scenario for a sample incidence angle of 40°. 

Figure 3. Stretch factor for σHEMWD with a radar incidence angle of 
40° 

For steep terrain in combination with a steep incidence 
angle, the stretch factor reduces the height error of WorldDEM, 
i.e. this height information is superior to the one from Change
DEM. For moderate to plain terrain in combination with a low
absolute height difference, the stretch factor is almost 1 and the
weighting between the two DEMs is balanced. With an
increasing absolute height difference, the height error of
WorldDEM is raised, i.e. the Change DEM gains increasing
superiority compared to WorldDEM. The final weighting is
integrated in the final WorldDEM Neo product (in percent,
weighted combination mask, WCM).
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4) Editing of fused DEM

Hydrological features are subject to changes in extent as
well as water level throughout time. For instance, ocean 
shoreline can change due to coastal erosion or harbor 
construction. Lakes and reservoirs can have different water 
extent/level. River courses can have changed. An automated 
process for delineation and vertical levelling process has been 
developed with the support of the hydrological information 
created during the WorldDEM editing process [2]. The editing 
information is integrated in the final WorldDEM Neo product 
(editing mask, EDM). 

5) Statistical analysis based on ICESat-2 ATL08

A global statistical analysis using ICESat-2 laser altimetry
data (ATL08, [5]) was applied on WorldDEM Neo. A filtering 
of the (reference) point data is based on the following attributes: 

• Sole h_te_best_fit_20m elevation without parallel
presence of canopy height information 

• h_te_uncertainty < 7.5m
• No hydro editing during production process
Regions with permanent snow/ice cover (Antarctica,

Greenland) have been excluded. The generalized slope gradient 
of WorldDEM Neo (~30m) is used to categorize the ICESat-2 
ATL08 point data. The point count for slopes of 0°-10° is 
significantly higher compared to slopes >10°. 

TABLE II. STATISTICAL RESULTS FOR WORLDDEM NEO BASED ON 
ICESAT-2 ATL08 TERRAIN POINTS (H_TE_BEST_FIT_20M) 

Slope LE90 RMSE ATL08 point count 
0°-10° 1.350 m 0.961 m 2’553’468’984 99.404 % 

10°-20° 4.979 m 3.122 m 14’201’213 0.553 % 
20°-30° 11.110 m 7.315 m 961’622 0.037 % 
30°-40° 16.882 m 12.695 m 125’519 0.005 % 
40+ ° 29.211 m 22.636 m 15’511 0.001% 

TOTAL 1.375 m 0.976 m 2’568’772’849 100 % 

III. RESULTS

A. Visual example
The following Figure 4 provides a visual comparison of

WorldDEM and WorldDEM Neo for an area North of the city 
of Lanzhou in China (36,45°N, 103,75°E; incl. radar image 
overlay). 

B. WorldDEM Neo Technical Specification
WorldDEM Neo is compliant to independent DEM

standards (DGED Level 4b, INSPIRE Level 17) and is specified 
according to the table below. 

IV. DISCUSSION AND FUTURE DEVELOPMENTS

WorldDEM Neo represents the most up-to-date global 
Digital Surface Model with a high level of detail and accuracy. 
The production is based on a fully automated and 
parameterizable python process, which allows easy adaptation 
and fast WorldDEM Neo re-processing to encompass future 
user requirements (e.g. new timestamp based on additional 
future acquisitions). 

Figure 4. Comparison display of WorldDEM (top) and WorldDEM 
Neo (bottom) for an area North of Lanzhou (China) 

TABLE III. WORLDDEM NEO PARAMETERS 

Acqusition timeframe 2017 - 2020 
Coverage Global / pole-to-pole 
Projection Geographic coordinates 
Data Tiling 0,5° x 0,5° 
Coordinate 
reference 

system 

horizontal WGS84-G1150 

vertical EGM2008 

Pixel 
spacing 

latitude (Y) 0,15” (~5m) 
longitude (X) 0,15” – 1,5” (~5m, dep. on latitude) 

A. Global DTM with new temporal footprint
A wide range of DEM applications (e.g. hydrology, risk

management, geology) require bare ground elevation 
information with vegetation, buildings, etc. removed. 
WorldDEM Neo opens the possibility for an improved global 
Digital Terrain Model (DTM) due to the higher level of detail 
and the fresh data acquisition compared to current DTMs 
originating from TanDEM- X (WorldDEM DTM LITE, 
FABDEM [6]). WorldDEM Neo 

DTM will close the gap of providing a global coverage 
while offering more detailed terrain structure and time update. 

The WorldDEM Neo DTM production process (knowledge- 
based set of rules) is based on the identification and description 
of surface objects within the DSM followed by a transformation 
of the surface heights into terrain heights while conserving the 
characteristics of the underlying terrain. The fully automated 
and parameterizable process is closed by an automated quality 
control and a visual check (if required). 

B. Local/regional quality improvement of WorldDEM
Neo 

Side looking radar technology can cause deficiencies in a 
DSM that can be isolated to specific regions of the Earth, e.g. 
urban areas and regions with very steep slopes. 

C. Regional updates of WorldDEM Neo beyond 2020
The on-going bistatic orbit configuration of TerraSAR-X

and TanDEM-X and the available satellite resources allow 
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additional DEM acquisitions, which can be used to further 
update the current version of WorldDEM Neo. 

Figure 5. Example of WorldDEM Neo DSM and WorldDEM 
Neo DTM for an area West of Munich (Germany; 48,25°N, 

11,25°E)) 

V. ACKNOWLEDGMENT

Airbus would like to thank DLR for their continuous support 
during the Change rawDEM production. 

REFERENCES 
[1] Rizzoli, P. & Martone, M. & Gonzalez, C. & Wecklich, C. & Tridon, D.B. 

& Bräutigam, B. & Bachmann, M. & Schulze, D. & Fritz, T. & Huber, M. 
& Wessel, B. & Krieger, G. & Zink, M. & Moreira, A. (2017).
“Generation and performance assessment of the global TanDEM-X 
digital elevation model”, ISPRS Journal of Photogrammetry and Remote
Sensing, Volume 132, 2017, Pages 119-139, ISSN 
0924-2716. https://doi.org/10.1016/j.isprsjprs.2017.08.008

[2] Collins, J. & Riegler, G. & Schrader, H. & Tinz, M. (2015). „Applying
terrain and hydrological editing to TanDEM-X data to create a consumer- 
ready WorldDEM product”, ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences. XL- 
7/W3. 1149-1154. https://doi.org/10.5194/isprsarchives-XL-7-W3-1149-
2015

[3] Lachaise, M. & Schweisshelm, B. & Fritz, T. (2020), „The new TanDEM-
X Change DEM: Specifications and Interferometric Processing, ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences. IV-3/W2-2020. 143-148. https://doi.org/10.5194/isprs-annals-
IV-3-W2-2020- 143-2020

[4] Wessel, B. (2018) “TanDEM-X Ground Segment – DEM Products
Specification Document”, EOC, DLR, Oberpfaffenhofen, Germany,
Public Document TD-GS-PS-0021, Issue 3.2, 2018. [Online]. Available:
https://tandemx-science.dlr.de/ 

[5] Neuenschwander, A. & Pitts, K. & Jelley, B. & Robbins, J. & Markel, J., 
& Popescu, S. & Nelson, R. & Harding, D. & Pederson, D. & Klotz, B. & 
Sheridan, R. (2022). “ICESat-2 Algorithm Theoretical Basis Document
for the Land - Vegetation Along-Track Products (ATL08)”, Version 5.0,
April 5, 2022. NASA ICESat-2 Project. 144p. 

[6] Hawker, L. & Uhe, P. & Paulo, L. & Sosa, J. & Savage, J. & Sampson, C. 
& Neal, J. (2022). “A 30m global map of elevation with forests and

buildings removed”. Environmental Research Letters. 17. 
https://doi.org/10.1088/1748-9326/ac4d4f  

[7] Grohman, G. & Kroenung, G. & Strebeck, J. (2006). “Filling SRTM
voids: The delta surface fill method”, Photogrammetric Engineering and
Remote Sensing. 72. 213-216.

https://doi.org/10.1016/j.isprsjprs.2017.08.008
https://doi.org/10.5194/isprsarchives-XL-7-W3-1149-2015
https://doi.org/10.5194/isprsarchives-XL-7-W3-1149-2015
https://tandemx-science.dlr.de/
https://doi.org/10.1088/1748-9326/ac4d4f


5 
https://doi.org/10.5281/zenodo.8101259 

Hawker, Uhe & Neal 

FABDEM Updates - FABDEM V1-2 

Laurence Hawker 
School of Geographical Sciences 

University of Bristol 
Bristol, UK 

laurence.hawker@bristol.ac.uk  

Peter Uhe 
Fathom 

Square Works, 17-18 Berkeley 
Square, 

Bristol, UK 
p.uhe@fathom.global

Jeffrey Neal 
School of Geographical Sciences 

University of Bristol 
Bristol, UK 

j.neal@bristol.ac.uk

Abstract—FABDEM (FABDEM (Forest And Building removed 
copernicus Digital Elevation Model) is a global 1 arc second grid 
spacing Digital Terrain Model. Trees and buildings are removed 
from Copernicus GLO30 DEM using a novel machine learning 
approach. Since FABDEM’s release it has been widely used by the 
community in a variety of geoscience applications. 

In this paper, we outline the latest updates to FABDEM (V1-2). 
Improvements to FABDEM include updating the baseline Digital 
Surface Model and methodological tweaks to fix discontinuities at 
some tile edges and artifacts caused by resampling at higher 
latitudes.   

I. INTRODUCTION 

FABDEM (Forest And Building removed copernicus Digital 
Elevation Model) is a global 1 arc second grid spacing Digital 
Terrain Model that removes buildings and trees from the 
Copernicus GLO30 DEM using a random forest based machine 
learning technique [1]. Since FABDEM V1.0 was released in 
December 2021, there have been numerous applications of 
FABDEM ranging from flooding [2,3] to road network 
extraction [4]. Users have provided invaluable feedback, and 
based on this, we introduce an update of FABDEM called 
FABDEM V1-2. FABDEM V1-2 is available from 
data.bris.ac.uk [5]. Note that FABDEM V1-1 was created but 
never publicly released and is not discussed in this article.  

There are five changes in FABDEM V1-2 compared to 
FABDEM V1-0, with the changes outlined below: 

• Discontinuities fixed at the edge of tiles covering
large homogeneous forests

• The underlying Copernicus DEM has been updated
to Copernicus 2021_1. Details on the updates to the
Copernicus GLO30 DEM can be found on the
Copernicus website [6].

• Copernicus GLO30 DEM has variable grid spacing
in high latitudes (50°N/S). This results in grids not
being aligned across the interface where different
resolutions are used, resulting in some artifacts
being introduced. For FABDEM, Copernicus DEM
was first resampled to a 1 arcsecond grid, however
for V1.0, the alignment of high latitude tiles was not 
matched to the low latitude tiles. The pre-

processing of the Copernicus DEM was updated for 
FABDEM V1.2 to align all tiles consistently. 

• File format: changed to Cloud Optimized Geotiff,
with updated compression options (DEFLATE
with PREDICTOR=2). This reduces file size by
~40%

• File metadata: AREA_OR_POINT label changed
to Point. Previously incorrectly labelled as Area.

Further details on some of the fixes are given in the following 
subsections, as well as comments on accuracy metrics to 
compare FABDEM V1-2 to FABDEM V1-0. 

II. IMPROVEMENTS

A. Discontinuities
Discontinuities were first reported in the Amazon rainforest.

In FABDEM V1-0 post-processing, a 5 pixel buffer was added 
to the corrected DEM for each 1 degree tile, before the post-
processing stage. This buffer was taken from the Copernicus 
GLO30 DEM, without forests removed. The inconsistency 
between the corrected DEM and buffer resulted in incorrect 
depression filling during the post-processing step for densely 
forested areas (Fig. 1). The uncorrected buffer would typically 
be the height of the forest, usually ~20m, resulting in depression 
filling from the edge of the tile. This happened in large forests 
as these are areas where corrections are applied over wide areas. 

The discontinuities were fixed by extending the buffer to 0.1 
degrees and using a corrected buffer (FABDEM). This avoids 
using the uncorrected elevations which falsely filled in the 
depressions. The result of the fix can be seen in Fig. 2. 

B. Artifacts in high latitude tiles
Copernicus DEM has variable grid spacing in high latitudes

(50°N/S), which FABDEM resampled to 1 arc second to create 
a consistent grid that is more compatible to models typically 
used in the geosciences. However, the alignment of the lower 
latitude tiles did not match the higher latitude tiles, creating a 
slight offset. A result of this were artifacts being introduced in 
some tiles due to resampling and processing errors, such as an 
extreme example in Fig. 3. Note most of the changes are minimal 
(e.g. Fig. 4). 

https://doi.org/10.5281/zenodo.8101259
mailto:laurence.hawker@bristol.ac.uk
mailto:p.uhe@fathom.global
mailto:j.neal@bristol.ac.uk
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https://spacedata.copernicus.eu/fr/collections/copernicus-digital-elevation-model
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Figure 1.  FABDEM V1-0 with valleys incorrectly filled (a), compared to 
FABDEM V1-2 (b). Difference to Copernicus DEM. Note the valleys 
incorrectly filled on FABDEM V1-0. Colour Maps for Figures are the 

Scientific color maps [7] 

 

Figure 2.   FABDEM V1-0 (a) compared to FABDEM V1-2 (b). Note the 
lack of discontinuities at tile boundaries in FABDEM V1-2. 

C. Error Metrics 
Reprocessing error metrics for FABDEM V1-2 yields mild 

improvements over FABDEM V1-0, with improvements in the 
order of 1-10cm (e.g. tiles in Germany and Poland not shown). 
However, for some applications, particularly hydrological 
applications, the improvements in FABDEM V1-2 can be 
significant, especially where discontinuities and artifacts have 
been removed. 

D. Other changes 
The file format of FABDEM V1-2 has been changed to 

Cloud Optimized Geotiff, with updated compression options 
(DEFLATE with PREDICTOR=2). This has helped reduce the 
size of the entire dataset to less than 300Gb, from ~450Gb of 
FABDEM V1-0. The new data record also includes a geoJSON 
of the tile extents (i.e. FABDEM in 1x1 degree tiles) to add 
useability. 

Finally, the file metadata AREA_OR_POINT label has been 
changed to Point. Previously this was incorrectly labelled as 
Area. 

 

 
Figure 3.  Difference between FABDEM V1-2 and FABDEM V1-0 for a 

high latitude tile. 

 

Figure 4.  Difference between FABDEM V1-2 and FABDEM V1-0 for a 
high latitude tile (less extreme example) 

E. Future Outlook 
FABDEM will be continuously improved with the addition 

of improved covariates, more (in both quantity and diversity) 
training reference elevation data and the refinement of the 
machine learning method. As a result, the development team will 
cease incremental updates to the FABDEM V1.X family of 
DEMs and focus on a more major development. Besides 
improving the quality of the corrections, other noteworthy 
developments that need to be addressed include filling in the 
missing tiles covering Armenia and Azerbaijan (not available in 
Copernicus GLO-30 DEM), making FABDEM easier to 
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download, and working with groups to develop datasets that 
commensurate FABDEM such as a hydrography. 
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Figure 5.  Terrain containing Iasi, Romania 
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Abstract—We proposed three new criteria to use in addition to 
those presented in the DEMIX wine contest for evaluating 1 arc 
second global DEMs. We use the criteria to compare the 
COPDEM and ALOS DEMs. These criteria use a pairwise, pixel 
by pixel comparison of the candidate DEM to a reference DEM for 
elevation, slope, and roughness. With two candidate DEMs and a 
tolerance for differences not considered significant, we can score 
each pixel as a tie or win for COPDEM or ALOS. The method 
allows us to map the differences, and shows that the terrain has a 
major impact on the errors in these DEMs. 

I. INTRODUCTION 
DEMs represent a fundamental building block for work in 

science, engineering, social science, government, and the 
military. DEMs at 1 arc second (~30 m) provide the best 
resolution freely available globally. The DEMIX group is 
working to compare and rank those DEMs [1]. We use their 
database [2] to show the geomorphometric and geospatial 
patterns of the differences. While we performed this analysis for 
6 DEMs, space restricts us to concentrate only on COPDEM and 
ALOS which are demonstrably much better than SRTM, 
NASADEM, and ASTER [3]. We also limit consideration of 
FABDEM, which attempts to approximate a DTM but only 
improves on COPDEM for some landscapes, so that we can look 
at the simpler case of only two DEMs. 

II. METHODS 
The wine contest [1] uses geomorphometric criteria to rank 

DEMs. The criteria must allow numerical ranking, which means 
the evaluations must be unsigned, and the method requires at 
least 3 DEMs for the statistical significance to be valid. While 
the criteria must be unsigned, the signed parameters like the 
mean and median differences provide important auxiliary 
information. 

We use ½ arc sec grids (Fig. 1), so that COPDEM and ALOS 
are equally affected by interpolation. We create the reference 
DTM and DSM where available by aggregation from high 
resolution source data. For ALOS and COPDEM the points in 
the original DEM are in their positions within the ½ sec grid, and 
they are surrounded by points from bilinear interpolation. This 
allows direct difference maps between COPDEM and ALOS, 
and shows the geometric pattern of the differences, without 
introducing variable interpolation effects between the DEMs. 
We consider elevation, slope, and roughness defined as the 
standard deviation of slope in a 5x5 window [3]. We make pixel 

by pixel comparisons for approximately 520,000 pixels in each 
DEMIX tile which covers approximately 100 km². The 
difference grids allow us to map the differences. We must set 
tolerances for what we consider significant differences before 
creating some grids, because the grids classify the map area into 
categories using the tolerances (Fig. 2). 

 

 
Figure 1.  ½ second resampling for arc second DEMs with rectangular pixels. 

We will show two representations of the results (Figures 2 
and 3), and the summary statistics for 20 test areas with over 200 
100 km² tiles (Figure 4 and Table 1). Figure 3 considers the pixel 
a tie if both COPDEM and ALOS are within the tolerance of the 
reference DTM; otherwise the DEM closer in absolute value to 
the reference DTM is the best. 

III. RESULTS 
Figure 2 shows the largest differences from the reference 

DEM occur in steeper terrain. The computation has nine 
categories (each test DEM can be high, equal within tolerance, 
or low). The complex category lumps 6 categories. 

The elevation bias in this tile is not representative of all tiles; 
the lack of bias for the slope and roughness are representative. 
The very small standard deviations are characteristic of 
COPDEM and FABDEM, as is the greater dispersion for ALOS, 
and the large dispersion for the other DEMs with a poorly 
defined mode. 

Despite the negative overall bias for slope difference, the 
distribution skews toward less steep slopes. This results from  
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Figure 2.  Comparison of COPDEM and ALOS to the reference half second DTM for DEMIX tile N35VW116G in the center of the map.  Difference maps 
above and difference histograms below.  Instate 15 on the right side of the map shows up difference appearance in the three DEMs.

comparting the ½ second reference DEM with an interpolated 
test DEM which has lower average slopes. 

Figure 5 shows roughness differences for a tile in the Canary 
Islands. The volcanic cones show the effect of trying to 
compare a pixel-is-area DEM and a pixel-is-point. The half 
pixel offset means that peaks, ridge crests, and valley bottoms 
in ALOS and COPDEM occur at different locations, and each 
is “better” compared to the reference DEM about half the time 
and the map pattern closely mimics the topography. 

IV.  DISCUSSION AND CONCLUSIONS 
The wine contest criteria used in by DEMIX [1] use 5 metrics 

for the unsigned difference distribution. For each parameter 
(elevation slope, roughness), the 5 metrics are highly correlated 
and do not provide greatly different results. The 5 metrics 

progressively get larger as they factor in increasingly extreme 
values in the tails of the distribution, but the global DEMs 
generally follow the same ranking. Beyond the evaluation 
numbers and rankings the criteria do not provide a simple, visual 
and intuitive way to assess the results. 

Our three new criteria for elevation, slope, and roughness 
take the percentage of points in the DEM where each DEM is 
closest to the reference DEM, and ranks the DEMs. As designed 
these criteria have less influence from the tails of the difference 
distribution. With only two DEMs in our test, we can create 
maps showing the spatial patterns, and relate them to the 
characteristics of the region and see how slope, roughness, and 
aspect affect where ALOS and COPDEM diverge from the 
reference DEM.  

 
Figure 3.  Comparison of COPDEM and ALOS to the reference half second DTM for DEMIX tile N35VW116G.  Difference maps above and difference 
histograms below. 
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Figure 4.  COPDEM and ALOS comparisons to the reference half second DTM and DSM where available for 20 test areas. 

 

 
Figure 5.  Roughness differences between COPDEM and ALOS from a 
reference DTM for DEMIX tiles N29MW014D.  Supplementary figure 2 
shows maps for elevation and slope, and both the DTM and DSM. 

TABLE I.  BEST DEM BY AREA 

 DTM DSM 

 ALOS COPDEM ALOS COPDEM 

Elevation 2 18 2 8 

Slope 1 19 0 10 

Roughness 1 19 3 7 
 

The maps allow a subjective assessment of DEM quality that 
adds to the quantitative results; as one example, we have noted 
that ALOS frequently has small anomalies tacking the satellite’s 
orbit path where different images where merged, something we 
did not observe with COPDEM. 

We assume that the reference DEM is the closest to a true 
value of what the elevation should be for a 1 arc second pixel.  
Aggregating the high resolution DEM to 1 arc second 
necessarily loses detail, and the largest differences to the global 

DEMs occur in steep terrain. In these pixels there is a large 
variation in elevation, and picking a single value to represent the 
pixel presents a challenge. We must consider the possibility that 
the choice for the elevations in the reference DEM has much 
more uncertainty in steep areas than in flat areas. 

These comparisons (Table I) show that COPDEM is clearly 
better than ALOS, but the differences are generally small.  
COPDEM is better in the most heavily forested areas, 
reinforcing the suggestion that the radar sensor has greater 
penetration in the canopy compared to an optical sensor as 
suggested in evaluating the positions of the global DEMs in lidar 
point clouds [7]. 

Using ½ grids allows direct comparison of ALOS and 
COPDEM, but does affect the slope differences and clearly 
shows the ½ pixel difference between the two DEMs. 
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Abstract— Elevation data are critical for assessments of coastal 
hazards, including sea-level rise (SLR), flooding, storm surge, 
tsunami impacts, and wave run-up. Previous research has 
demonstrated that the quality of data used in elevation-based 
hazard assessments must be well documented and applied 
properly to assess potential impacts. Global digital elevation 
models (DEMs), at 30- to 90-meter resolution, have been used 
extensively to map and characterize coastal environments and the 
at-risk resources (population and built structures) contained 
therein. The inherent absolute vertical accuracy of global DEMs 
precludes their usefulness for assessing exposure to fine 
increments (< 1 meter) of coastal inundation at high confidence 
levels. However, global DEMs are highly suitable for delineation 
of the global low elevation coastal zone (LECZ) (elevation < 10 
meters). An accuracy evaluation of global DEMs over the United 
States has been conducted to quantify their performance in 
correctly mapping the LECZ, namely in terms of vertical 
uncertainty and corresponding confidence levels for several 
representations of the coastal zone. The evaluation approach 
includes comparison of the DEMs with an extensive set of high-
accuracy geodetic control points as the independent reference data 
covering a variety of coastal relief settings. The 1-arc-second (30-
meter) global DEMs evaluated include ALOS World 3D, ASTER 
GDEM, Copernicus, FABDEM, and NASADEM, and the 3-arc-
second (90-meter) global DEMs include CoastalDEM, Copernicus, 
MERIT, and TanDEM-X. Additionally, lower resolution (1-
kilometer) global DEMs were also assessed, namely the Global 
Lidar Lowland DTM (derived from ICESat-2) and the GEDI 1-
km DEM. The results of the accuracy characterization show that 
FABDEM performs the best (minimal vertical bias and lowest 
vertical root mean square error) for high-confidence mapping of 
the LECZ. Among 90-m DEMs, CoastalDEM performs best, 
although the differences across datasets are minimal. The results 
also demonstrate the importance of rigorously accounting for 
elevation uncertainty when applying global DEMs for coastal 
mapping applications. 

I. INTRODUCTION 
Due to the low-lying nature of many coastal lands, the 

topography, or elevation in relation to sea level, largely controls 
their exposure to adverse effects of increased water levels, both 
chronic conditions (sea-level rise) and episodic events (storm 
surge inundation or king tide flooding).  Elevation data, 
notably in the form of digital elevation models (DEMs), are 
therefore critical for assessing exposure to permanent or 

temporary flooding and other effects of increased water levels 
along the coast. 

Previous research has demonstrated that the quality of data 
used in elevation-based coastal hazard assessments must be well 
documented and applied properly to assess potential impacts [1-
2]. The vertical uncertainty of the input elevation data 
substantially controls the minimum increments of inundation 
that can be effectively used in coastal hazard assessments.  
When properly characterized, the vertical accuracy of the DEM 
can be used to report assessment results with the uncertainty 
stated in terms of a specific confidence level. 

Global DEMs, at 30- to 90-meter resolution, have been used 
extensively to map and characterize coastal environments and 
the at-risk resources (population and built structures) contained 
therein. However, in most cases, uncertainty has not been 
considered. An accuracy evaluation of global DEMs has been 
conducted to quantify their performance in mapping the global 
low elevation coastal zone (LECZ), namely in terms of vertical 
uncertainty and corresponding confidence levels for several 
delineations of the coastal zone. 

II. DATA AND METHODS  

A. Data 
The 1-arc-second (30-meter) global DEMs evaluated include 

ALOS World 3D (AW3D30) [3], ASTER GDEM [4], 
Copernicus (COP30) [5], FABDEM [6], and NASADEM [7], 
and the 3-arc-second (90-meter) global DEMs include 
CoastalDEM [8], Copernicus (COP90) [5], MERIT [9], and 
TanDEM-X [10]. Additionally, lower resolution (1-kilometer) 
global DEMs were also assessed, namely the Global Lidar 
Lowland DTM (GLL DTM) (derived from ICESat-2) [11] and 
the GEDI 1-km DEM 
(https://daac.ornl.gov/GEDI/guides/GEDI_L3_LandSurface_M
etrics_V2.html). 

The global DEMs were assessed by comparison with an 
extensive set of high-accuracy geodetic control points as the 
independent reference data covering a variety of coastal relief 
settings in the conterminous United States (CONUS). The 
control points are a product of the U.S. National Geodetic 
Survey (NGS) and are known as “GPS on Bench Marks” 
(https://www.ncei.noaa.gov/access/metadata/landing-
page/bin/iso?id=gov.noaa.nodc:0209231). These points are 
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considered to be NGS’s best control points, with millimeter- to 
centimeter-level accuracies, used in development of hybrid 
geoid models, so they are an excellent reference dataset for 
comparing with DEMs for accuracy assessment purposes. The 
points have been used extensively for such analyses [12-13]. For 
the study area of the CONUS coast, a subset of 3,713 points 
(with elevation < 10 meters) were extracted from the full GPS 
on Bench Marks dataset of more than 37,000 points. 

B. Methods 
To calculate the absolute vertical accuracy for each global 

DEM, the elevation value at every reference point is compared 
to the corresponding DEM elevation (extracted via bilinear 
interpolation at the exact point location) and the difference in 
elevations is recorded. The difference represents the DEM error 
at that point. The differencing operation is done by subtracting 
the reference point elevation from the DEM elevation. In this 
way, the difference statistics from the point comparisons are 
easy to interpret; that is, a positive mean error indicates that on 
average the DEM is too high (the DEM has a positive bias). 
Conversely, a negative mean error indicates that on average the 
DEM is too low (a negative bias). Prior to comparison of the 
DEMs and the reference data, the control points were 
transformed to be in the same horizontal coordinate system and 
vertical reference frame (vertical datum) of each of the DEMs, 
so the difference statistics do not contain any artificial biases. 

For inundation modeling, a specific case of coastal hazard 
assessment, the DEM is the base data on which the water level 
is raised to delineate the land area subject to inundation under 
the selected water level (i.e., areas with an elevation less than the 
water level). Such a procedure is essentially an elevation 
contouring process whereby a line of constant elevation at the 
selected water level is derived from the elevation data. It is easy 
to define such an elevation contour, especially in a geographic 
information system, and the vertical increment between adjacent 
contours (or the contour interval) must be specified. A small 
interval can be applied to any DEM but doing so does not imply 
that the derived contours automatically meet published accuracy 
standards. The interval must not be so small that it falls within 
the bounds of vertical error of the DEM, as such an operation 
would place the measurement (elevation increment) “in the 
noise” of the underlying elevation data. 

Based on the concept of elevation contour line accuracy, a 
method has been developed [1] to determine the minimum 
contour interval (or in the case of inundation modeling, the 
minimum increment of water level increase) that should be used 
to meet a specified confidence level. Using that minimum 
interval ensures that the contours are truly supported by the 
DEM given its inherent vertical uncertainty. In the United States, 
legacy national map accuracy standards applied to topographic 
contour maps specify that 90% of tested elevations should fall 
within one-half of the map contour interval [14], and this has 
been called the vertical map accuracy standard (VMAS) with a 
90% confidence level, or alternatively “linear error at 90% 
confidence” (LE90). Based on the contour accuracy standard, it 
has been demonstrated [15] that the contour interval (CI) can be 
expressed directly as a factor of the elevation data accuracy, as 
in CI = LE90 x 2. Two of the most commonly used DEM error 
metrics are root mean square error (RMSE) and LE95, and direct 
translations among RMSE, LE90, and LE95 are available [14], 
assuming the errors are from an unbiased normal distribution. 
Because the error metrics represent a portion of the cumulative 
probability distribution of errors, a confidence level can be 
stated for the minimum increment, for example 68% confidence 
for RMSE (equivalent to the “one sigma” error, or standard 

deviation of the errors for an unbiased normal distribution), 90% 
confidence for LE90, and 95% confidence for LE95. 

By applying the concept of contour line accuracy, or 
alternatively, minimum inundation increment, (as a function of 
DEM accuracy), it has been documented that global DEMs are 
not suitable for modeling exposure to fine increments (< 1 meter) 
of coastal inundation at high confidence levels [15]. However, 
given their range of inherent vertical accuracy, global DEMs are 
suitable for general delineation of the LECZ (areas with 
elevations < 10 meters above sea level), a commonly used 
elevation threshold to delimit coastal zones [16-18]. The vertical 
accuracy statistics calculated in the accuracy assessment 
reported here are applied in the contour accuracy approach to 
quantify the performance of the free and open global DEMs for 
mapping the LECZ, including stating the confidence level. 

III. RESULTS AND DISCUSSION 
Results of the accuracy assessment are shown in Table I.  

The results are grouped by sets of rows for the 30-m DEMs 
(FABDEM, COP30, AW3D30, NASADEM, ASTER GDEM) 
(rows 2-6), 90-m DEMs (CoastalDEM, COP90, TanDEM-X, 
MERIT) (rows 7-10), and 1-km DEMs (GLL DTM, GEDI) 
(rows 11-12). 

TABLE II.  ACCURACY ASSESSMENT RESULTS 

DEM 
DEM 
grid 
spacing 

No. of 
ref. 
points 

Mean 
error 
(m) 

RMSE 
(m) 

Min. 
interval 
(m) at 
68% 
conf. 

Min. 
interval 
(m) at 
95% 
conf. 

FABDEM 30 m 3696 -0.055 1.231 2.463 4.827 

COP30 30 m 3676 0.401 1.570 3.140 6.154 

AW3D30 30 m 3578 1.029 2.809 5.617 11.010 

NASADEM 30 m 3641 0.638 3.090 6.180 12.113 

ASTER 
GDEM 30 m 3646 5.874 7.199 14.398 28.219 

CoastalDEM 90 m 3696 -0.810 2.092 4.183 8.199 

COP90 90 m 3678 0.786 2.110 4.221 8.273 

TanDEM-X 90 m 3733 0.942 2.324 4.648 9.111 

MERIT 90 m 3594 1.104 2.338 4.676 9.166 

GLL DTM 1 km 2116 -0.734 1.528 3.056 5.990 

GEDI 1 km 3099 -0.234 2.608 5.217 10.224 

Among the 30-m DEMs, FABDEM performs the best, 
exhibiting the lowest vertical RMSE (1.23 m) and minimal 
vertical bias (about -6 cm). This translates into a contour 
interval of 2.46 m at 68% confidence, and a contour interval of 
4.83 m at 95% confidence. Thus, FABDEM is very suitable for 
extremely high-confidence delineation of the LECZ (i.e., the 
10-m contour). In fact, FABDEM could be used to delineate a 
5-m “shoreline zone” at better than 95% confidence, and even 
a very low elevation coastal zone of 2.5 meters at 68% 
confidence. COP30 is also appropriate for very high-confidence 
mapping of the 10-m LECZ. AW3D30 and NASADEM could 
also be used for such LECZ delineation, albeit at lesser 
confidence levels. ASTER GDEM is not appropriate for 
accurate mapping of the LECZ. 

Among the 90-m DEMs, CoastalDEM performs the best, 
although the performance differences across the 90-m DEMs is 
minimal. CoastalDEM, COP90, TanDEM-X, and MERIT are 
suitable for high-confidence mapping (better than 95% 
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confidence) of the 10-m LECZ, and each could be used to 
delineate a 5-m shoreline zone at about 68% confidence.  
Although GLL DTM is at a much reduced spatial resolution of 
1-km (compared to other global DEMs), this DEM is also found 
to be suitable for very high-confidence mapping of the 10-m 
LECZ. 

It is important to note that the calculation of the minimum 
interval is based solely on the RMSE.  In selection of a DEM 
for coastal zone mapping, users should also note the mean error 
(vertical bias) of the DEMs, which is fairly substantial in some 
cases.  In terms of inundation modeling, the mean error can 
indicate whether use of the DEM will on average overpredict or 
underpredict areas subject to inundation. 

IV. CONCLUSION 
Numerous medium resolution global DEMs are available for 

regional, continental, and global coastal hazard assessment.  
Rigorous accuracy assessment of the DEMs provides 
quantitative information about which DEM could perform the 
best for high-confidence mapping of the global low elevation 
coastal zone.  The results of the assessment reported here show 
that FABDEM is the most accurate and is quite well suited for 
high-confidence delineation of 5-m and 10-m coastal zones. 
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Abstract— Generalization methods and their quality is a very 
important element of geomorphometric research. Polygonal 
simplification methods in generalization can generally preserve 
the basic shapes well even at a higher level of generalization. The 
limited suitability for subsequent mathematical modeling is a 
major limitation of the use of TIN-based generalization (polygonal 
simplification) in geomorphometry. Our main goal was to build a 
method for generalizing the DEM of the land surface using 
polygonal simplification and to create a generalized model at any 
level of generalization suitable for further analysis. This involves 
converting the resulting coarse TIN to a smooth grid. We have 
created an algorithm that combines well-known algorithms for 
individual stages of the generalization process with a new method 
of anisotropic subdivision that increases the quality of the process. 
The algorithm consists of three main parts: generalization, 
skeletonization, and smoothing. The main generalization 
procedure uses Quadratic Error Metric Simplification (QEMS) on 
the polyhedral model. A smooth surface is created by Laplacian 
smoothing and Loop subdivision methods. With a greatly 
simplified model, the level of smoothing required to mitigate the 
triangular structure is high and thus has the undesirable effect of 
smoothing the actual edges. We improved the algorithm by using 
an additional step between generalization and smoothing. The 
algorithm creates a detailed triangular skeleton using our new 
anisotropic subdividing triangles based on QEMS quadrics at the 
vertices. The result shows that the algorithm can successfully 
progressively remove small features, but also preserve the basic 
shapes of the landscape surface. The output mesh is also 
sufficiently smooth without triangular artifacts from the 
polyhedral TIN model. 

I.  INTRODUCTION 
With highly detailed and accurate LiDAR DEMs now 

widely available, the problems of geomorphometric 
investigation have shifted from data error and sampling 
adequacy to how the surface is actually defined [1]. Research 
has demonstrated that neither the data’s initial scale, nor the 
highest resolution, guarantee the best representation, suggesting 
that scale optimization is a complex but necessary problem [2]. 
This confirms that generalization methods and their quality is a 
very important element of geomorphometric research. 

The use of grid-based generalization methods predominates 
in geomorphometry, although many generalization methods 
have been developed for TIN-based DEMs [3]. Polygonal 
simplification methods (a group of TIN-based generalization 
methods) can generally preserve basic shapes well at a higher 
degree of generalization [4]. 

The limited suitability for subsequent mathematical 
modeling is the main limitation of the use of TIN-based 
generalization in geomorphometry. Land surface curvatures and 
other higher order parameters are calculated almost exclusively 
from grids. Therefore, conversion of the resulting TIN to a 
smooth grid is necessary. Generalization methods used in 
landscape modeling skip this phase. Separate conversion 
methods to create a raster grid from a TIN are not very common. 
If available, they are very basic using linear or simple 
interpolation, e.g. TIN To Raster in ArcGIS [5]. This is not 
suitable for generating a grid from a highly generalized TIN, as 
triangle artifacts remain visible. 

Our main goal was to compose a method to generalize the 
DEM of the land surface using polygonal simplification and 
create a generalized model at an arbitrary level of generalization 
suitable for further analysis. This means that the key is to find a 
balance between preserving the characteristic shapes of the land 
surface and smoothing it enough for calculations without 
triangular artifacts. 

The construction of a smooth surface over a triangular mesh 
is an important topic in geometric modeling, and various 
techniques have been proposed for this problem [6]. They used 
either triangular patches or refinement schemes. It has been 
proven that patches with smooth interpolation schemes often 
generate extraneous folds [7]. In connection with the properties 
of the generalized model, the used polygonal simplification is 
better complemented with the approximating subdivision 
surfaces. This combination can be supplemented and refined, 
and then forms the integrated generalization algorithm that we 
present below. 

II. METHOD  

A. Quadric Error Metric Simplification 
The Quadric Error Metric Simplification (QEMS) method [8] 

is a well-known method for simplifying a polyhedral surface. It 
was developed primarily for computer graphics; however, it is 
universal and suitable for use in land surface modeling too [3]. 
It uses the edge contraction procedure to simplify the model 
geometry. 

QEMS uses the same metric to calculate the weight of edge 
contraction and optimal vertex placement. This metric is based 
on the quadratic distances of the new vertex from the individual 
planes of the triangles with the original merged vertices. An 
isosurface of constant distance is a quadric (which gives the 
method its name) and its parameters are stored in the vertices in 

https://doi.org/10.5281/zenodo.7861927
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the form of a 4x4 matrix. A quadric is an ellipsoid if not 
degenerate. The resulting quadric after edge collapse is the sum 
of the quadrics of the merged vertices and therefore preserves 
information about the shape of the surrounding surface [9]. 
Visualized quadrics on a simplified model are shown in Fig. 1. 

B. Quadric Error Subdivision 
To preserve as much shape information as possible from the 

simplified model from the QEMS method, we created the 
Quadric Error Subdivision (QES) method. It enables the creation 
of a significantly simplified model by QEMS, but prepares a 
detailed skeleton for subsequent operations on the polyhedral 
model (e.g. smoothing). The main idea is to reuse the surface 
shape information stored in the vertices during QEMS. 

 
Figure 1. Quadric isosurfaces of the simplified model vertices 

 
QES uses a triadic subdivision where each original triangle 

is replaced by 9 new ones. The basic division uses the PN 
triangle subdivision presented in [7]. The difference is that the 
new vertices along the edges are not in the tangent plane of the 
original vertex (since they are not patch control points and lie on 
the surface instead) but at a distance of ⅔ between the tangent 
plane and the edge of the triangle (Fig. 2). 

This is anisotropic subdivision, the new vertices along the 
edges of the triangle are not evenly spaced but are shifted 
towards the nearest original vertex based on the shape of the 
QEMS quadrics at that vertex. The ratio of the shift is equal to 
the contraction of the quadric from the normalized sphere in the 
direction from the vertex to the new vertex (Fig. 3). The 
calculation of the central control point is based on the position 
of the other new vertices along the edges, so the shift is used 
without changing the referenced equation. The shape of the 
created triangles follows the shape of the representing surface. 

C. Laplacian smoothing 
Laplacian smoothing is a simple, yet effective technique for 

polyhedral surface smoothing. For each vertex in a mesh, a new 
position is chosen based on local information (the position of 
neighbors) and the vertex is moved there. This displacement can 
be written as the Laplacian operator U(P) for the point. Local 
update rule 

P ← P + λ U(P) (2) 

applied to each point of a polyhedral surface is called 
Laplacian surface smoothing. The factor λ is typically a small 
positive number and the process (2) is performed repeatedly [10]. 
With more iterations and higher λ, the smoothed surface has a 
strong degree of shrinkage. 

 

Figure 2. Basic localization of subdivision vertices - modified PN 
triangle subdivision. 

 

Figure 3. Anisotropic triadic subdivision using the shape of 
quadric isosurfaces in vertices (2D view). Arrows (a) show a vertex 

shift (b) dependent on the shape change of the sphere (c) to the 
quadric (d) direction of the triangle edge (e). 

D. Loop subdividing 
A subdivision surface algorithms use a recursive refinement 

scheme to better approximate the underlying curved surface. 
The Loop method for subdivision surfaces [11] is an 
approximating subdivision scheme for triangular meshes. It is 
based on iterative refinement of the triangular mesh using dyadic 
split operation – each edge of the triangular mesh is split into 
two, and new vertices are reconnected to form 4 new triangles. 

The position of new, but also original vertices, is calculated 
based on a three-directional quartic box spline. This spline basis 
function is C2-continuous. The Loop scheme produces surfaces 
that are C2-continuous everywhere except at extraordinary 
vertices (whose valence N ≠ 6), where they are C1-continuous. 

III. ALGORITHM DESCRIPTION  

A. Overview 
The presented algorithm contains procedures for 

generalizing the DEM of the land surface up to a very high level 
of generalization and creates a smooth generalized model 
suitable for further analysis. The algorithm consists of three 
main parts: 

1. Generalization 

2. Skeletonization 

3. Smoothing 

The main generalization procedure uses the QEMS on a 
polyhedral model as presented in [3]. The input and output of the 
algorithm is a raster DEM, therefore a data structure conversion 
is required. However, converting a generalized triangular mesh 
to a raster grid (calculated from a smooth and curved surface) is 
a challenge. The smooth surface is created by Laplacian 
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smoothing and Loop subdivision methods. When targeting a 
highly simplified model, the level of smoothing required to 
mitigate the triangular structure is high and thus has the 
undesirable effect of smoothing the actual edges. We improved 
the algorithm by creating a detailed triangular skeleton using our 
novel anisotropic subdividing triangles based on QEMS 
quadrics at the vertices. The result of smoothing after anisotropic 
subdividing significantly better represents the original land 
surface. 

B. Generalization 
The Quadric Error Metric Simplification (QEMS) method [8] 

is a well-known method for simplifying a polyhedral surface. It 
was developed primarily for computer graphics; however, it is 
universal and suitable for use in land surface modeling too [3]. 
It uses the edge contraction procedure to simplify the model 
geometry. 

C. Skeletonization 
The Quadric Error Metric Simplification (QEMS) method [8] 

is a well-known method for simplifying a polyhedral surface. It 
was developed primarily for computer graphics; however, it is 
universal and suitable for use in land surface modeling too [3]. 
It uses the edge contraction procedure to simplify the model 
geometry. 

D. Smoothing 
The Quadric Error Metric Simplification (QEMS) method [8] 

is a well-known method for simplifying a polyhedral surface. It 
was developed primarily for computer graphics; however, it is 
universal and suitable for use in land surface modeling too [3]. 
It uses the edge contraction procedure to simplify the model 
geometry. 

IV. RESULTS 
As an input for generalization testing, we utilized aerial 

LiDAR raster DEM products with a resolution of 1 meter, 
obtained from various regions of Slovakia and different types of 
land surfaces. Each of the research areas selected for this study, 
covering several square kilometers, were primarily located in 
regions where previous geomorphological research had been 
conducted. The initial grids were generalized to many levels to 
confirm the applicability of the algorithm in different conditions. 
The individual phases of the algorithm (intermediate results) are 
presented on the model of the high mountain landscape in the 
Tatras (the vicinity of Skalné vráta hill - the terrain comprising 
rocky formations along the ridge at an altitude above 1,600 
meters), generalized to level 75 in Fig. 4. 

A comparison of the results of different levels of 
generalization is shown in Fig. 5. It depicts a model of Devínska 
Kobyla hill, located in the western region of Bratislava, which 
has a vertical range of 150 to 514 meters above sea level. The 
model includes anthropogenic elements such as quarries, and 
has been generalized with a ratio of 20, 60, and 150. 

V. CONCLUSION 
We have created an algorithm that combines well-known 

algorithms for individual stages of the generalization process 
with a novel anisotropic division method that increases the 
quality of the process. The results of the algorithm are now tested 
and compared with the results of different generalization 
methods and the comparison will be presented soon. 

The software is developed to run in Node.js and relies on 
external libraries to perform partial tasks. Once the production 
quality of the software is ensured, the generalization tool will be 
made available to the public. 

 
Figure 4. Algorithm stages: a) initial model, b) QEMS generalization, c) 

skeleton using QES, d) smoothed model to create grid 
 

 
Figure 5. Generalization levels: a) initial model, b) 20, c) 60, d) 150. 
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Abstract—Surface roughness, interpreted in the wide sense of 
surface texture, is a generic term referring to a variety of aspects 
and scales of the spatial variability structure of surface 
morphology. Even when the interest is limited to short-range 
roughness, relative to the resolution considered, various aspects of 
surface roughness can be characterized, such as omnidirectional 
roughness and roughness anisotropy. Adopting smoothing and/or 
upscaling approaches it is possible to perform a multiscale analysis 
of the selected roughness indexes. In this case study, a simplified 
geostatistical-based algorithm for surface/image texture analysis is 
adopted for the multiscale analysis. The proposed roughness 
algorithm is designed to offer a balance between the flexibility and 
complexity of geostatistical approaches, providing an easy yet 
informative approach for roughness analysis. Differently from 
conventional geostatistical approaches, it bypasses the detrending 
step to reduce at a minimum the user selected computational 
parameters. The algorithm is capable to partition roughness 
according to specific lag distances and to roughness anisotropy; 
moreover, ad hoc roughness indexes can be developed from the 
basic implementation. The multiscale analysis is based on a simple 
iterative approach, according to which the short-range roughness 
indexes are calculated from multiple upscaled versions of a source 
DEM. The DEM adopted is the 30 m resolution Copernicus DEM, 
representing a portion of the Taklimakan Desert, China. Despite 
the simplicity of the approach, the informative content extraction 
potential is very high, as confirmed by the unsupervised clustering 
of the landscape based on multiscale roughness indexes. 

I.  INTRODUCTION  
This case study explores the potentialities of a simplified 

geostatistical algorithm for the multiscale analysis of surface 
roughness or, more generally, surface texture. The algorithm [1] 
is designed for the analysis of surface roughness and image 
texture, with some basic implementations coded in R as well as 
in Python for ArcMap [2]. The algorithm has been devised to 
provide an easy to use yet powerful geostatistical approach for 
the spatial variability analysis, reducing at a minimum level the 
user-dependent choices. Differently from conventional 
geostatistical approaches [3-4], it bypasses the detrending 
procedure; the effect of local slope is filtered out exploiting the 
geostatistical approach based on increments of order k [5]. The 
algorithm permits to calculate short-range roughness indexes, 
where short-range means that the spatial variability of surface is 
computed considering differences in elevation or in band 
intensity, in the case of imagery, comparing locations at a small 
distance (e.g., lags of 1 or 2 pixels). The current implementation, 

which can be easily modified to compute ad hoc roughness 
indexes [6], permits to calculate two key factors of short-range 
roughness: omnidirectional roughness and roughness anisotropy 
(strength and direction). With this kind of algorithm, it is 
possible to perform a multiscale analysis of roughness indexes 
by means of a simple approach based on DEM/image upscaling 
[7-11]. It should be highlighted that the present implementation 
is conceived for the analysis of DEMs and imagery on a 
projected system. For working in geographical coordinates 
systems custom kernels can be defined, if one wants to derive 
the roughness considering lags with projected distances.   

II. METHODS  

A. Study area and Digital Elevation Model 
In order to highlight the potential of the approach, the 

Taklimakan Desert (Fig. 1) China has been selected as study site. 
This kind of landscape is well suited to outline the potential of 
the proposed approach. In fact, it is characterized by the 
widespread presence of complex morphological features [12-13], 
with multiple wavelengths and anisotropies (Fig. 2), such as in 
correspondence of the network of complex/compound mega 
dunes. The analysis is performed on a digital elevation model 
(DEM) at 30 m resolution (5000 x 5000 pixels), derived by 
means of UTM projection of the Copernicus DEM, at 1 arc-
second resolution [14]. For supporting the morphological 
interpretation, Sentinel 2 imagery at 10 m resolution (ESA, 
Copernicus) has been considered; however, the absence of 
vegetation and of anthropic land cover enhance the correlation 
between image texture and surface roughness (e.g., Fig. 2). 

B. The multiscale approach 
The multiscale approach followed is relatively simple: the 

short-range roughness analysis is performed iteratively on 
multiple coarser resolution versions of the original DEM. It is an 
approach that exploits the dispersion variance and sampling 
frequency to filter out specific wavelengths [7]. 

The short-range roughness is analyzed considering the MAD 
(Median Absolute Differences) estimator of spatial variability 
[6], which represents a robust version of the usual geostatistical 
estimators such as the variogram and the madogram [5]. The 
adopted geostatistical approach bypasses the detrending step 
considering differences of differences (i.e. increments of order 
2); the implemented algorithm permits to compute roughness for 
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lag distances of 0.5, 1 and 2 pixels. For this case study a lag 
distance of 2 pixels has been considered both to highlight better 
the anisotropy as well as to filter out some fine-grain noise of the 
DEM. A circular search window with a 3-pixel radius has been 
used for MAD estimations. Two basic short-range roughness 
indexes have been selected: omnidirectional roughness (units in 
m) and anisotropy strength (ranging from 0, isotropy, to 1, 
maximum anisotropy). The anisotropy direction (a further index 
provided by the algorithm) has not been considered for the 
landscape classification, being here interested in rotation 
invariant metrics. 

 

Figure 1.  Study site location highlighting the morphology of the portion of 
the Taklimakan desert considered. 

The coarsening of the original DEM resolution has been 
conducted via simple pixel aggregation, using the mean as 
estimator. The following coarsening factors of the original pixel 
(30 m) have been selected: 1, 2, 4, 8, 16, 32. Accordingly the 
DEMs’ resolution ranges from 30 m to 960 m (further referred 
as levels L1-L32) and the lag distance from 60 m to 1920 m. 
Clearly a smoother transition and a narrower/wider range of 
variation can be selected. For each of the 6 levels L1-L32 the 
short-range roughness indexes, omnidirectional roughness (Fig. 
3) and anisotropy (Fig. 4), have been calculated and then 
resampled via bilinear interpolation to the original resolution at 
30 m. 

Most of the computations have been computed in the R 
statistical programming environment. Saga Gis 8.3 has been 
adopted for the classification of landscape according to 
roughness indexes by means of the Isodata clustering method. 
Arcmap 10.8.2 (Esri) has been deployed for data management 
and the creation of the maps presented here. 

III. RESULTS  
The landscape classification (Fig.5), for a portion of COP 

DEM tile, has been conducted with the Isodata method 
(variables normalized, number of clusters tested from 5 to 16), 
using the 12 multiscale roughness indexes computed above (6 
omnidirectional roughness indexes and 6 anisotropy indexes). 
This should be considered a preliminary classification and a 
more in-depth analysis on the classification approaches and 
selection of input features should be carried out. Nevertheless, 
the derived 8-clusters classification is satisfactory for providing 

a glance of the rich informative content of the basic short-range 
roughness indexes computed. The spatial assemblage of clusters 
(Fig. 5, left) and the mean values of roughness indexes for 
clusters centers (Fig. 5, right) are quite distinctive of the different 
morphologies. 

 

Figure 2.  A detail of the study area: top, Copernicus DEM at 30 m resolution 
(ESA - Copernicus); bottom, Sentinel 2 imagery at 10 m resolution (Sentinel 2 

color composite, ESA - Copernicus). It is evident the transition between the 
complex sand dune system and the mountain area with outcropping bedrock. 

For example, the classes 3 (yellow), 7 (orange) and 8 (red) 
distinguish specific morphologies of the complex dunal system.  
Class 3 is characterized by low omnidirectional roughness at 
levels L1 and L2, but very high, as class 7, at levels L16 and 
L32; it has a relatively high anisotropy at levels L4, L8 and L16. 
This class essentially represents long wavelength dunal system 
with a smooth surface in the short-range. Class 7 is like class 3, 
but it is characterized by a higher roughness at levels L1 and L2, 
indicating a rougher morphology at short range, related to 
presence of short wavelength dunes. Class 8 is different, 
because it is characterized by the highest omnidirectional 
roughness at all scales and the highest anisotropy in the levels 
L1, L2 and L4. Class 8 essentially detects the steep scarps of 
mega-dunes facing south-west direction. The assemblage of 
clusters changes evidently in the two central mountains, where 
the bedrock is shallow or outcropping and there are some 
elongated ghost dunes, with a prevalence of classes 2 (green), 4 
(pink) and 5 (dark green). Class 4 is characterized by low 
anisotropy at all scales and often represents areas with star 
shaped dunes. Class 5, with the lowest omnidirectional 
roughness at all scales, is representative of the alluvial deposits 
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of Keriya and Niya rivers and interdunal flat and smooth 
surfaces. 

 

Figure 3.  For the area of Fig. 2, short-range omnidirectional roughness 
computed on the multiresolution DEMs (levels L1-L32, from 30 to 960 m 
resolution). Increasing the pixel size, longer wavelengths contribute to the 

computed roughness indexes. The separation between the desert, the mountain 
with shallow bedrock and the alluvial deposits is particularly evident at levels 

L16 and L32. Color scales histogram equalized. 

 
 

Figure 4.  For the area of Fig. 2, short-range roughness anisotropy computed 
on the multiresolution DEMs (levels L1-L32, from 30 to 960 m resolution). 

Increasing the pixel size the roughness anisotropy related to longer 
wavelengths is enhanced. Color scales histogram equalized. 

 

Figure 5.  Isodata classification according to surface roughness indexes (on the left) and clusters centers in terms of omnidirectional roughness and anisotropy (on 
the right, hillshade on the background). 

From the graphs of cluster centers (Fig. 5) it is also evident 
that anisotropy is a distinctive feature. For example, classes 1, 2 
and 4 (black, light green and pink) have almost identical 
omnidirectional roughness at all scales and their differences are 
mainly related to anisotropy. 

IV. CONCLUSIONS  
The results of this explorative analysis are promising and 

demonstrate the applicability of the approach. Notwithstanding, 
multiple aspects require further investigation, both from the 
perspective of the computational details as well as from the 

interpretative point of view. Regarding the geomorphological 
interpretation it should be admitted that the study site has been 
selected as a “toy example”, and the interpretation of computed 
indexes is quite naïve from the geomorphological and geological 
point of view. The interpretation of this kind of analysis from 
the perspective of geomorphic processes analysis and modelling 
is promising (e.g., [12] and [13]). Accordingly, collaboration 
with experts on the Taklimakan desert geology and 
geomorphology would be surely an added value. 
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Abstract—In recent years, new multibeam echosounders that can 
simultaneously collect data at multiple frequencies have become 
available. However, the effects of acoustic frequency on 
bathymetric data have yet to be characterized, as early research 
on these new systems has instead focused on backscatter data. 
Here we explore such effects by deriving terrain attributes and 
classifications from bathymetric data from Head Harbour, Nova 
Scotia, Canada, that were collected at five different operating 
frequencies. The geomorphometric analyses were conducted on 
bathymetric surfaces generated from data collected at each 
operating frequency using four scales of analysis. Results show 
that bathymetry, its derived terrain attributes, and terrain 
classifications produced with them are all dependent on the 
acoustic frequency used to collect bathymetric data. While the 
observed effects on the regional bathymetry were relatively minor, 
local bathymetry, terrain attributes and terrain classifications 
were highly impacted by the frequency used when collecting data. 
The impacts were less important when the terrain attributes and 
classifications were generated using broader scales of analysis. 
These results raise questions about how bathymetry is measured 
and defined and how we should interpret the outcomes of marine 
geomorphometric analyses. This is particularly relevant as such 
analyses have become a key component of marine habitat mapping 
and submarine geomorphology mapping. 

I.  INTRODUCTION 
Multibeam echosounders (MBES) remain the most effective 

instruments for collecting continuous, high-resolution 
bathymetric data in waters where light cannot penetrate. They 
are active remote sensors that function by transmitting acoustic 
waves at a given frequency and measuring the return time of the 
signal after reflecting off the seafloor – much like LiDAR 
systems do with light. This produces a point cloud that can be 
used to generate a digital surface model (DSM) of the seafloor, 
commonly referred to as a bathymetric surface. The intensity of 
the return is also measured to produce backscatter data that can 
be used as a proxy for surficial geology. MBES typically 
produce sound at a single frequency, which is often less than 70 
kHz for deep-water systems (deeper than 200 m) and up to 500 
kHz for shallow-water systems (less than 200 m). The frequency 
at which a sonar operates is at the discretion of its manufacturer, 

and no standards exist to guide that choice. Bathymetric data 
collected by different systems at different frequencies are almost 
always considered comparable as it is assumed that all systems 
capture the top of the seafloor accurately regardless of frequency.  

In the past few years, however, a new generation of MBES 
systems that can collect data using multiple frequencies 
simultaneously has become available [1]. Research on new 
opportunities provided by this technology is still in its infancy, 
but to date, has focused mostly on backscatter data; backscatter 
was shown to vary significantly with frequency as a function of 
the interactions between acoustic wavelength and the 
substrate [2,3]. This may have potential implications for how 
bathymetry is interpreted, but they have yet to be explored. 
These implications can be far-reaching as bathymetry is the 
primary input for marine geomorphometric analyses that have 
become common in disciplines like marine habitat mapping, 
hydrodynamic modelling, and submarine geomorphology [4].  

The goal of this work was to evaluate the effects of acoustic 
frequency on bathymetric data and terrain attributes, and on 
classifications that can be derived from them at multiple scales 
of analysis. 

II. METHODS  
Acoustic data were collected from Head Harbour, Nova 

Scotia, Canada, in October 2021, using an R2Sonic 2026 MBES. 
The sonar was mounted on the M/V Eastcom and operated at 90, 
180, 270, 360, and 450 kHz frequencies simultaneously. 
Positioning and motion compensations were recorded with an 
Applanix WaveMaster GPS and IMU, respectively. Raw 
soundings from each frequency were processed separately in 
QPS Qimera, including data cleaning, and sound velocity, 
motion, and tidal corrections, to produce five bathymetric 
surfaces at 1 m horizontal resolution (Fig. 1). The cleaned 
acoustic data for each frequency were also imported to QPS 
FMGT for backscatter processing, and five surfaces were 
produced, also at 1 m horizontal resolution. 
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Figure 1.  Multibeam bathymetric data in Head Harbour, Nova Scotia, 
Canada, collected at a 450 kHz frequency. 

The five bathymetric datasets were used to generate 15 
terrain attributes: slope, easterness and northerness, maximum, 
minimum and mean curvatures, planform and profile curvatures, 
twisting curvature [5], a topographic position index [6], the 
relative difference from mean value [7], a vector ruggedness 
measure [8], a surface area to planar area ratio [9], an adjusted 
standard deviation metric [10], and the roughness index-
elevation [11]. In addition, the datasets were used to classify the 
study area into seven morphometric features [12]: channels, 
passes, peaks, pits, planar flat areas, planar slope areas, and 
ridges. All terrain attributes and classifications were performed 
using 3x3, 9x9, 27x27, and 81x81 windows of analysis, resulting 
in 325 surfaces to compare. All calculations were performed 
using the “MultiscaleDTM” package [10] in R v. 4.2.2. The 
surfaces produced were first compared in terms of their 
descriptive statistics (minimum, maximum, mean, standard 
deviation, range, excess kurtosis, and skewness). Correlation 
matrices (Pearson’s coefficients) and difference maps were also 
built to explore variations in spatial distribution, and frequency 
distributions were compared for the terrain classifications.  

III. RESULTS 

A. Bathymetric data 
The descriptive statistics of the five bathymetric datasets 

were very similar, yet all difference maps between pairs of 
datasets show that less than 1% of pixels had identical depth 
values (Table I). As expected, the closer the frequencies of two 
datasets, the smaller their differences. In general, DSMs were 
shallower, less variable, and had a narrower range of depths with 
increasing operating frequency. Correlations between all DSMs 
were very high, the lowest being 0.989 between the 90 kHz and 
the 360 kHz DSMs. The absolute maximum difference in depths 
between two DSMs ranged from 42 cm (between the 270 and 
450 kHz DSMs) to 1 m (between the 90 and 360 kHz DSMs). 
The absolute average differences between pairs of DSMs ranged 
from 2 to 21 cm. The absolute differences in depths, summarized 
in Table I, were highly spatially correlated with backscatter. 

Areas with higher backscatter values usually had smaller 
differences.  

TABLE I.  STATISTICAL DISTRIBUTION OF ABSOLUTE DIFFERENCES IN 
DEPTH BETWEEN PAIRS OF DSMS FROM DIFFERENT FREQUENCIES 

DSMs 
Compared 

Absolute Differences (cm) 
[0] ]0-1] ]1-2] ]2-5] ]5-10] > 10 

90-180 kHz 0.05% 1.99% 1.89% 5.49% 14.88% 75.71% 

90-270 kHz 0.03% 1.18% 1.28% 4.26% 5.24% 88.01% 

90-360 kHz 0.02% 0.71% 0.88% 3.87% 4.77% 89.75% 

90-450 kHz 0.02% 0.71% 0.86% 3.57% 4.70% 90.14% 

180-270 kHz 0.16% 6.87% 9.20% 50.68% 32.01% 1.08% 

180-360 kHz 0.06% 2.48% 3.28% 19.60% 64.21% 10.38% 

180-450 kHz 0.05% 2.10% 2.59% 12.57% 60.32% 22.38% 

270-360 kHz 0.36% 15.33% 20.96% 54.98% 8.19% 0.17% 

270-450 kHz 0.19% 8.11% 11.03% 54.73% 24.89% 1.05% 

360-450 kHz 0.94% 36.46% 30.47% 29.82% 2.19% 0.12% 

B. Terrain Attributes 
Terrain attributes demonstrated much greater differences 

among frequencies than bathymetry. For example, the average 
of the pairwise coefficients of correlation for twisting curvature 
generated using a 3x3 window of analysis was 0.151 (Table II). 
Slope was the least affected variable with an average correlation 
of 0.894 among all frequencies (3x3 window). Others at this 
window size ranged from 0.204 (relative deviation from mean 
value) to 0.655 (vector ruggedness measure). Descriptive 
statistics confirm the high variability of terrain attributes at 
different frequencies. Roughness metrics were generally higher 
on average at lower frequencies. This was also true for slope but 
only when it was computed with a 3x3 or a 9x9 window of 
analysis; at broader scales, the average of slope was higher at 
higher frequencies (270 kHz with a 27x27 window, and 360 kHz 
with a 81x81 window).  

In general, using a broader window of analysis to generate 
the terrain attributes increased the correlations among the 
different frequencies and thus reduced the differences (Table II), 
yet there was no consistent linear relationship observed between 
frequency and correlation strength. For example, many 
measures of curvatures had lower average correlations at a 
window of 27x27 than at windows of 9x9 and 81x81. 

TABLE II.  RANGE OF AVERAGE PAIRWISE CORRELATIONS AMONG THE 
SAME TERRAIN ATTRIBUTE GENERATED FROM BATHYMETRIC DATASETS OF 

DIFFERENT FREQUENCY, ACROSS SCALES OF ANALYSIS 

Scale Lowest x̄ 
Correlation Attribute Highest x̄ 

Correlation Attribute 

3x3 0.151 Twisting 
Curvature 0.894 

Slope 
9x9 0.333 Relative 

Deviation from 
Mean Value 

0.984 

27x27 0.553 0.944 
Adjusted 
Standard 
Deviation 

81x81 0.410 Roughness 
Index-Elevation 0.953 Northerness 

C. Terrain Classification 
As with the terrain attributes, the terrain classifications were 

considerably affected by the frequency of the input data. At the 
3x3 scale of analysis, the morphological maps produced with 
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360 and 450 kHz data were the most similar, yet 53% of the 
study area was classified differently in the two maps. This 
increased to 71% between the maps produced with 90 kHz and 
360 kHz. These differences among frequencies decreased when 
broader scales of analysis were used, ranging from 42 to 57% at 
9x9, from 22 to 78% at 27x27, and between 1 and 6% at 81x81.  

The differences are also reflected in the relative coverage of 
the different morphological features. For example, the finer-
scale analysis of the 90 kHz data indicated that 30% of the study 
area was channels, 29% ridges, and 25% passes. When the 
analysis was repeated using the 450 kHz bathymetric data as 
input, these numbers changed respectively to 16%, 16%, and 
42%. These three feature types were the most variable with 
changing frequency, followed by pits and peaks. The relative 
coverage confirms the previous observation that the variability 
is smaller when the analysis is performed at broader spatial 
scales. 

IV. DISCUSSION 
While the differences among bathymetric surfaces were 

widespread and could reach up to 1 m in places (Table 1), the 
high correlations among DSMs indicate that the spatial 
distribution of depth values remains relatively similar. This 
suggests that the effects of frequency on bathymetric data are 
primarily local, with low impact on the regional representation 
of the seafloor. The fact that higher frequencies produced 
generally shallower depths aligns with the theory behind signal 
penetration. 

Terrain attributes were highly frequency-dependent, yet little 
consistency was observed in the relationships between 
frequencies and the statistical and spatial distributions of terrain 
attribute values. The results for both bathymetry and the terrain 
attributes raise questions about what is measured by the acoustic 
signal, and about how fine-scale interactions between the 
acoustic signal and the composition of the seafloor affect the 
response. This has implications for how these datasets can be 
used in subsequent analyses in various contexts. While 
additional field experiments are necessary to answer these 
questions, the seafloor is largely inaccessible to broad-scale and 
detailed ground-truthing. Additionally, it is virtually impossible 
to fully replicate complex field conditions in experimental tanks 
due to spatiotemporal variability in oceanographic conditions 
that may affect the interactions between the mechanical acoustic 
waves and the components of the transmission medium and the 
target. A bathymetric lidar dataset could be used as a comparison, 
but water conditions in this study area (i.e., turbidity) are not 
suitable for bathymetric lidar data collection. In addition, it may 
be difficult to align what is measured by sound at given 
frequencies with what is measured by light at a given frequency. 

While this work does not address the theoretical questions 
surrounding marine acoustic-sediment interactions, it 
demonstrates important effects of acoustic frequency on 
recorded depth values. This has implications for multi-source 
datasets of multiple frequencies. Artefacts are likely where 
datasets of differing frequency overlap, which can then influence 
subsequent analyses like terrain classification. We also found 
that the effects on terrain attributes were amplified compared to 
the bathymetry. Terrain attributes may vary considerably based 
on the frequency at which the bathymetric data were collected, 
however these impacts are unpredictable as no consistent 
patterns could be established. A similar conclusion was reached 
in previous work when looking at how various artefacts in digital 
bathymetric models impact terrain attributes [13], raising 
questions about whether artefacts in the data are influencing the 

geomorphometric analyses. The observed frequency 
dependence highlights the importance of critically evaluating the 
fitness for use of datasets. However, despite increased awareness 
in the community of how sensitive bathymetry can be to survey 
parameters and conditions, most marine research does not have 
the benefit of bathymetric data at multiple frequencies, which 
enables comparison, validation, and multiple redundancies (and 
therefore, reduces data uncertainty). It also remains unclear 
whether generalizations can be made, as results may be 
dependent on the characteristics of the local seafloor. 

The variability of terrain classification with acoustic 
frequency was higher than initially expected, but this result 
aligns with the observation that frequency impacts local 
variability more than regional variability. When the 
morphological features were delineated using terrain attributes 
that were computed over analysis distances of 3 and 9 m, they 
were thus more affected by the local variability of the 
bathymetry. The effect decreased when characterizing 
morphological features at greater analysis distances (i.e., 27 and 
81 m). This highlights the need to match the scale of analysis 
with the scale of local morphological features and indicates that 
the quantification of finer-scale morphological patterns may be 
highly variable and inconsistent, especially if the 
geomorphometric analyses capture artefacts in the bathymetric 
data caused by the operating frequencies, the angular 
dependence of seafloor detection, or platform motion.  

Future work should continue looking for patterns between 
acoustic frequency, bathymetry, and terrain attributes – for 
example by quantifying variations in spatial autocorrelation. 
Testing multiscale terrain attributes to identify whether they can 
help differentiate artefacts from real fine-scale variability, and 
therefore capture the relevant characteristics at broader scales 
regardless of frequency would also be interesting. In terms of 
terrain classification, we should explore how combining terrain 
attributes with backscatter data, which are also known to vary 
significantly with acoustic frequency, may impact seafloor 
classification. Given the low correlations observed between 
some of the terrain attributes that were calculated at different 
frequencies, it may be fair to assume that they provide different 
information on the first few centimetres of seafloor, and they 
could be considered as independent variables. This may enable 
testing whether combinations of terrain attributes from different 
frequencies allows for a better discrimination of seafloor 
features and characteristics than single-frequency data.  

V. CONCLUSION 
The ability to collect multibeam bathymetric data 

simultaneously at different acoustic frequencies is new, and 
much remains to be understood about these data’s characteristics 
and uses. Here we compared five bathymetric datasets collected 
between 90 and 450 kHz, and derived 15 terrain attributes and a 
classification of morphological features from each. This analysis 
was repeated at four different spatial scales of analysis. Results 
show that acoustic frequency alters measured bathymetry, and 
that the effect is amplified for all derivatives of bathymetry. Few 
consistent patterns between frequency, terrain attributes, and 
spatial scale could be established. This work is a first step in 
trying to understand the utility, differences, and potential pitfalls 
of quantitatively characterizing the morphology of the seafloor 
at different acoustic frequencies. 
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Abstract— Time-in-Daylight (TiD) estimates the portion of total 
daylight over a time span that a location experiences direct 
radiation. This paper describes a method for estimating TiD using 
horizon angle maps derived in a range of azimuths and 
information about the sun’s position during the time span. TiD is 
evaluated as a potential land-surface parameter (LSP) for relief 
mapping and solar radiation modelling applications. The use of 
horizon angle to map shadow areas in calculating TiD makes this 
LSP conceptually similar to both openness and sky-view factor 
(SVF). However, TiD differs most significantly in the pairing of 
horizon angle maps with a dynamic model of sun position. The 
findings showed that TiD is well suited to applications in relief 
visualization, particularly with digital surface models (DSMs) in 
urban areas. The ability to estimate TiD with specific date/time 
ranges also makes it better suited for solar radiation modelling 
applications than either openness or SVF. 

I.  INTRODUCTION 
Shaded-relief mapping, or analytical hillshading [1], is one 

of the most common land-surface parameters (LSP) derived 
from digital elevation models (DEMs). Hillshading is often used 
for topographic visualization and as a predictor in environmental 
modelling applications involving solar radiation [2]. Despite its 
widespread use, there are issues with the application of hillshade 
maps in both of these areas. Interpretation of the terrain is highly 
sensitive to the light-source-viewer orientation—under some 
conditions, relief can appear inverted, with elevated sites 
appearing to be low-lying and vice versa, a phenomenon known 
as the pseudoscopic illusion [3]. Furthermore, the degree to 
which topographic features are apparent in hillshade maps is 
very dependent upon their orientation relative to the light source. 
Some researchers have also argued that the use of a single light-
source direction with the traditional hillshade method results in 
near- complete loss of detail both within the darkened areas 
sloping away from the light source and in over-exposed areas 
directly facing the light, although this deficit can be addressed 
by applying a weighted average of multiple light-source 
directions in a multi- directional hillshade [4]. Lastly, because 
hillshading is based solely on the local topographic properties of 
slope gradient and orientation, it cannot account for shadowing 
from distant terrain [5]. 

These issues have led some researchers to develop 
alternative LSPs that overcome the limitations of hillshading, 
including the openness index [6] and the sky-view factor (SVF) 
[2,5]. Both of these alternatives have found broad application, 
particularly in archeological surveying [7]. This paper describes 
a new LSP, called Time-in-Daylight (TiD), that can be used as 

an alternative to hillshade maps in relief visualization and solar 
modelling applications. 

II. TIME-IN-DAYLIGHT (TID)  

A. Definition 
TiD is defined as the portion of the total daylight period over 

a span of time that a location experiences direct radiation. TiD 
ranges from 0 (full shadow) to 1 (full sun). Thus, it is effectively 
the result of the integration through time of a dynamic Boolean 
shadow/sunlight model. Fig. 1 shows an example of a TiD map 
derived from a 10-m lidar DEM of an area south of Brantford, 
Canada. TiD has been calculated in this example using the full 
day and full year. Darker areas represent sites that experience 
more shadowing throughout the year. 

B. Estimation and implementation of TiD 
Whether or not a site is contained within a shadow area at a 

particular time is determined by the sun’s position (altitude and 
azimuth, θ and φ respectively) and the horizon angle (µ) in the 
direction of φ [5]. µ is the maximum vertical angle between the 
horizontal plane and the topography (i.e., the horizon) in a 
direction. When θ is lower than the local horizon angle, the site 
is within a shadow cast by a distant object. Thus, thresholding a 
µ- map for a particular sun position will produce a shadow 
model for an instant in time. TiD can be estimated by deriving a 
series of µ- maps from a DEM corresponding to the sun 
positions for a specified time span and then, for each grid cell, 
determining the portion of maps (or duration) the cell is in 
sunlight. We only consider times when the sun is above the 
nominal horizon, i.e., θ > 0, which ensures that TiD ranges from 
0 to 1. 

Because it is impractical to sample time continuously, there 
are two approaches to estimating TiD. A TiD implementation 
may either discretize time, sampling at regular intervals and 
estimating the µ-maps at each individual time stamp, or φ may 
be discretized, i.e., sampling at a constant azimuth interval and 
then calculating the times at which the sun is located at each φ 
value for each day in the time span (if the span includes multiple 
days, there will be multiple times). The first approach has the 
advantage that, because each sampled time is of equal duration, 
one merely needs to count the portion of µ maps in sunlight to 
estimate TiD. However, each sampled time is likely to have a 
unique φ, and because µ must be calculated to correspond to φ, 
potentially a very large number of µ-maps will need to be 
estimated (one for each sampled time over the span). 

https://doi.org/10.5281/zenodo.7879601
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The second approach offers the main advantage that there are 
significantly fewer µ-maps that must be calculated (360 divided 
by the φ-interval minus the φ-intervals for which the sun is never 
above the horizon during the time span). However, because the 
rate of change in φ is not constant during the day, each sampled φ-
interval represents a varying duration, and a time- weighted sum 
must be used to estimate TiD. Ultimately, of the two main 
computational tasks involved in measuring TiD, i.e., tracking the 
change in solar position during the time span and calculating µ-
maps, the latter is by far the more computationally intensive. 
Thus, the second approach is recommended, and it is this method 
that is used in the TiD tool implemented in the WhiteboxTools 
open-source GIS software [8]. 

 

Figure 1. TiD for a site south of Brantford, Canada. TiD should be 
displayed using a greyscale with lighter colors associated with 

brighter areas. 

In applying the WhiteboxTools TiD tool, the user must 
specify the φ-interval, the maximum search distance used for 
calculating µ, the location (latitude and longitude) of the mid-
point of the input DEM (used to calculate sun positions), and 
the time span. The search distance and φ-interval parameters 
both impact processing times, although performance is more 
sensitive to the later parameter (Table I). The span is provided 
as starting/ending days of the year and starting/ending times of 
day. Therefore, TiD can be estimated for a range of days, e.g., 
a season or the whole year, or for specific times of day, e.g., 
mornings or afternoons. For instance, Fig. 2 shows TiD maps 
for different time spans derived from the same 0.5-m lidar 
digital surface model (DSM) of a suburban neighborhood in 

Guelph, Canada. The WhiteboxTools TiD tool is currently 
limited to application with projected DEMs and does not 
account for Earth’s curvature. It is therefore best applied to 
surface models with less than regional-scale spatial extents. 

 
TABLE I. PROCESSING TIME ON M1-MAX PROCESSOR TO CALCULATE 

TID WITH VARYING PARAMETER VALUES FOR A 47.5 MILLION GRID CELL DEM. 
 

Parameter Values Time (mm:ss) 

100-m search distance, 15° φ-interval 03:46 

50-m search distance, 15° φ-interval 03:13 

10-m search distance, 15° φ-interval 02:32 

50-m search distance, 5° φ-interval 09:20 

50-m search distance, 10° φ-interval 04:46 

50-m search distance, 30° φ-interval 01:42 

50-m search distance, 45° φ-interval 01:16 

 

The tool has been implemented using the Rust programming 
language and uses parallelized code for calculating χο-maps to 
improve computational performance. The use of a maximum 
search distance parameter (also used in the calculation of 
openness and sky-view factor) improves the performance of the 
tool. The χο algorithm also only estimates the slope between the 
source grid cell and cells along the search line when a new 
maximum elevation is detected, since comparing elevations is 
faster. Lastly, the search for χο for a grid cell can be cut short 
before the maximum distance is reached if a χο-value greater than 
a threshold (set to 80-degrees) is encountered. Such high slopes 
can only typically occur when the obstruction cell (horizon) is 
located near the query cell and a substantial increase in elevation 
would be necessary for a more distant grid cell to form the actual 
horizon. This short-circuiting can improve algorithm 
performance, particularly when applied to DSMs in urban areas 
containing numerous buildings and vegetation. 

C. Comparison with hillshade, openness, and SVF 

The WhiteboxTools TiD algorithm was found to be faster 
than the Saga GIS SVF tool when applied with similar 
parameter values, although both LSPs took considerably longer 
to process a 47.5 million grid cell test DSM of the Guelph area 
than either hillshade or positive openness (Table II). 

 

TABLE III.  PROCESSING TIME ON M1-MAX 
PROCESSOR TO CALCULATE VARIOUS LSPS FOR A 47.5 

MILLION GRID CELL TEST DEM. 
 

LSP Parameters Time (mm:ss) 

Hillshade θ = 30°, φ = 270° 00:01 

Openness 100-m search distance 00:12 

SVF 100-m search distance, 10° φ-interval 10:33 

TiD 100-m search distance, 10° φ-interval 05:58 

Fig. 3 compares hillshade, positive openness, SVF, and TiD 
for an area of the University of Guelph campus. It is evident that 
as a relief visualization technique, hillshade is less satisfactory 
than the other LSPs for this dataset; it appears flat by 
comparison and its basis on local 3x3 neighborhoods makes it 
unable to capture the relative height differences among the 



Lindsay  

  28 

many off-terrain objects in the DSM. Positive openness, SVF 
and TiD appear similar, although TiD is most like openness 
(Figs. 3D and 3B). TiD does appears smoother than openness, 
but this is solely due to the finer φ-interval used in its calculation, 
which is also the primary reason why openness is faster to 
estimate (Table II). Unlike openness and SVF, TiD appears less 
omni-direction in illumination, which is apparent where one 
side of buildings is more brightly lit than the reverse side. The 
SVF raster has a strong dependency on local slope, which is 
something that has been previously observed about the LSP [7]. 

 
 

Figure 2. TiD calculated for A) sunrise to 09:30 (full year), B) 15:30 
to sunset (full year), C) January to March (full day), and D) June to 

August (full day). In each image, lighter colors indicate fuller sunlight. 
 

 
 

Figure 3. Hillshade (A), positive openness (B), SVF (C), and full-year 
TiD (D) for an area of the University of Guelph campus. In each image, 

lighter colors indicate higher LSP values. 

III. DISCUSSION AND CONCLUSIONS 

For relief visualization mapping, positive openness, SVF, 
and TiD are each better suited than traditional hillshading for 
application to DSMs in complex urban settings. The extended 
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neighborhoods used to calculate distant horizons can encode 
information about the relative heights of buildings and 
vegetation, which means that they generally appear less flat 
than hillshade maps (Fig. 3). Full-year TiD has a directional 
lighting that is dictated by the local solar almanac and, therefore, 
has less omni- directional illumination than either openness or 
SVF. Whether or not this property provides advantages for 
relief mapping visualization is debatable and in practice all three 
LSPs (openness, SVF, and TiD) provide similar looking relief 
maps. 

TiD has advantages over similar LSPs, however, for 
modelling the spatial pattern of solar energy potential. TiD is a 
measure of the direct solar radiation potential while openness 
and SVF are more related to diffuse radiation. The ability to 
restrict TiD calculation to specific day ranges (Fig. 2) could be 
useful for crop growth modelling, where TiD could be 
calculated over the growing season for specific crops in a region. 
Similarly, the ability to restrict TiD to certain times of day (Fig. 
2A) could be useful for power utility companies engaged in 
residential rooftop solar-panel installation. For example, it 
would be possible to estimate TiD from lidar DSMs of 
residential neighborhoods during peak- demand times to help 
utilities target residences with suitably exposed properties for 
rooftop solar panel installation. 
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Abstract—This paper reports results from a geosemantic comparison 
of landforms classified in the Summit and Ridge feature classes in 
the Geographic Names Information System (GNIS). The comparison 
is based on a 2D shape analysis of manually delineated polygons 
produced by USGS staff to correspond to 33,304 Summit and 8,006 
Ridge features. Five shape measures were chosen for this specific 
geomorphometry-based analysis. Univariate and bivariate statistics 
are first calculated to compare the two feature classes. This is 
followed by unsupervised learning with k-means cluster analysis to 
identify two major geomorphometric clusters corresponding to 
Summit and Ridge features. Although this supports sufficient 
internal homogeneity to have stable Summit and Ridge feature 
classes, more than 7,500 (18%) special features were also identified, 
which were assigned by k-means to the cluster not corresponding to 
their given GNIS class. These features remain to be analyzed further 
to decide if GNIS features should be reclassified based on 
geomorphometric analysis of available polygonal representations. 

I.  INTRODUCTION 
Landforms are dependent features of terrestrial planetary 

surfaces and are incredibly challenging to delineate because of 
their indeterminate and vague extents. Delineation of landform 
objects is intrinsically linked to how they are conceptualized and 
categorized (especially into linguistic categories) [3,4]. In 
geosciences, general geomorphometric methods for land surface 
segmentation are preferred. However, the specific 
geomorphometry approach is preferable for cartographic 
representation and natural language applications because it can 
support the naïve (commonsense) geography-based description 
and characterization of terrain in terms of cognitively and 
culturally salient landform objects.  

 Research in specific geomorphometry on automated 
mapping and geospatial and geomorphological characterization 
of popularly recognized landforms shown on topographic maps 
is quite limited. Macroscale landforms are important to people 
and recognized as individual entities, even if their spatial extents 
are not explicit. In the United States, all such named landforms 
are found recorded in the Geographic Names Information 
System (GNIS), the official topographic gazetteer database 
developed by the U.S. Geological Survey (USGS) in 
cooperation with the U.S. Board on Geographic Names (BGN) 
[9]. However, more than 2.28 million GNIS features are 

classified into 63 non-hierarchical, mutually exclusive, broadly 
scoped feature classes, which were created based on generic 
terms of the feature names, such as Mount or Canyon, and not 
as a definitive or scientific classification system [5].  

There are two major limitations of most topographic 
gazetteers, including GNIS. First, they are limited to point 
feature representation of all features—including landforms. 
Thus, the two lead authors have established a long-term research 
collaboration for automating the extraction of cognitively 
plausible and scale-sensitive areal representations of landforms 
[1-2,6-7]. Adapting such methods for national-scale automated 
mapping of GNIS landform features is one of the top objectives 
of this collaboration.  

The second problem of gazetteers is due to basing the classes 
on name generics, lack of a formal specification of class 
semantics, and issues of semantic overlap between classes. In 
the case of landforms within GNIS, there has never been a 
formal investigation into whether the chosen landform 
categories make semantic sense or whether features are 
classified correctly. A visual scan of topographic map labels for 
specific landforms and nearby contour patterns reveals cases 
where the GNIS classification fails to correspond to the type of 
landform people would identify in that area. A formal, large-area 
study is only possible if mapped boundaries for landform 
features are available. However, no existing general or even 
specific geomorphometric methods yield a cognitively plausible 
agreement between named landforms as would be visually 
perceived by people and algorithmically extracted objects.  

Fortunately, the authors now have access to a database of 
manually delineated 2D polygons corresponding to 89,100 
GNIS landform features across the US. These polygons were 
digitized by USGS staff members of the US Topo program [8] 
for a different project related to the automated placement of 
feature labels on topographic maps. A small subset of the 
manually delineated polygons has already been successfully 
used to identify limitations and suggest improvements for the 
core-eminence method of mapping salient topographic 
eminences (a subset of convex landforms) [6].  

The discussion here is limited to the semantic comparison of 
the Summit and Ridge feature classes based on the 2D shape 
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analysis of manually delineated polygons corresponding to 
GNIS landform features from the classes. Summit and Ridge 
features correspond, respectively, to non-linear and linear 
topographic eminences, which are cognitively salient convex 
landforms [7].  

II. METHODOLOGY 
GNIS point feature data are freely available as a text file 

from the USGS [9]. Manually digitized GNIS landform 
polygons were obtained internally by the second author by 
virtue of her status as a USGS employee. This dataset is not 
available publicly. Of the 89,100 landform polygons, 33,304 
correspond to Summit and 8,006 to Ridge GNIS landform 
features. The 2D shape analysis of these Summit and Ridge 
landform polygons relied on five popular 2D shape measures 
summarized in Table 1. For the elongation measure, the width 
and length of the oriented bounding box for each GNIS feature 
were generated with the help of the Minimum Bounding 
Geometry tool available in ArcGIS Pro GIS software. All 
other shape measures were calculated with the help of the 
Python shapely package, widely used for the manipulation and 
analysis of planar geometric objects. 

Univariate statistics, box plots, and frequency distribution 
histograms were generated for each shape measure to 
summarize shape measure statistics. Next, a bivariate 
scatterplot and correlation matrix was generated for all pairs 
of shape measures to thoroughly analyze the shape differences 
between features within and across the Summit and Ridge 
classes. 

TABLE I.  2D OBJECT SHAPE MEASURES 

2D Shape 
Measure 

Shape Description 
Formula Definition 

Compactness 
(Com) 

(4π•area) / 
(perimeter)2 

Ratio of the area of an object to the area 
of a circle with the same perimeter. 

Max value of 1 is achieved for circular 
objects. 

Roundness 
(Rou) 

(4π•area) / 
(convex 

perimeter)2
 

Ratio of the area of an object to the area 
of a circle with the same perimeter as 

the object’s convex hull. Max value of 1 
is achieved for circular objects. 

Elongation 
(Elo) 

(width 
/length)_bb 

The width-to-length ratio of the object’s 
bounding box is oriented parallel to the 

object’s major axis. 

Convexity 
(Con) 

(convex 
perimeter)/ 

(object 
perimeter) 

Ratio of the perimeter of an object’s 
convex hull to the perimeter of the 

object itself. A value of 1 signifies a 
perfectly convex object, and a value less 
than one signifies an object having an 

irregular boundary or containing holes. 

Solidity 
(Sol) 

(object 
area)/ 

(convex 
area) 

Ratio of the perimeter of an object’s 
convex hull to the perimeter of the 

object itself. A value of 1 signifies a 
solid object, and a value less than one 
signifies an object having an irregular 

boundary or containing holes. 
 

Finally, all 41,310 features were input into the unsupervised 
machine learning method of K-means cluster analysis to test if 
2D shape measures segregated the features into only two or more 
statistically significant clusters. Testing was done by deriving up 
to 10 clusters to check for the existence of additional transitional 
classes in addition to the expected two primary clusters 
corresponding to Summit and Ridge classes. Features 
(mis)classified by the K-means method such that Summit (Ridge) 
features assigned to the cluster corresponding to the other Ridge 

(Summit) feature class were identified and analyzed for more 
insights.  

All data analysis and K-means cluster analysis were 
automated with a Python script using typically used Python data 
analysis and visualization libraries. 

III. RESULTS 

A. Geomorphometric analysis based on exploratory 
statistics 

As evident from summary statistics (Table 1) and the 
frequency distributions (Figure 1), the shape measures help 
capture differences between the shapes of polygons digitized 
for the GNIS Summit and Ridge feature classes. Note that 
because compactness and roundness are strongly positively 
correlated (Figure 2) and have nearly identical frequency 
distributions, only the frequency distribution for Roundness is 
included in Figure 1. Ridge shape measure distributions are 
close to normal, but Summit shape measures are all left-skewed, 
with extremely skewed solidity and convexity. Based on the 
mean values of shape measures and distribution shapes, the 
digitized polygons would lead us to believe that. In contrast, 
there is substantial overlap between shape-measure frequency 
distributions; non-linear Summit features are more rounded, less 
elongated, and exhibit a higher degree of solidity/convexity 
than Ridge features. Box plots (not presented here for lack of 
space) also complemented these observations.  

The correlation matrix in Figure 2 shows the direction and 
strength of correlation between all five shape measures. As 
expected, compactness is significantly positively correlated 
with roundness. But they still differ appreciably in the power of 
their correlations with other variables. Both compactness and 
roundness are positively correlated with all other measures as 
well, but most positively with solidity. In contrast, elongation 
exhibits its weakest correlations with convexity, followed by 
solidity, with these correlations being appreciably lower for the 
Ridge feature class compared to the Summit class. For only 
Ridge features, there is also an interesting lack of correlation 
between roundness and convexity (but not solidity. Scatter plots 
of all variable pairs (not shown here) confirmed insights already 
gained. 

B. Geomorphometric analysis based on K-Means 
clusters  

The K-means unsupervised method was chosen because this 
project aimed to identify clusters representing Summit and 
Ridge objects. When the five shape measures for the 41,310 
features were input into the k-means algorithm, it predicted only 
two primary clusters. A sharp elbow (inflection point) was 
observed after two clusters in the inertia plot. Due to the 
predominance of Summit features in one cluster and Ridge 
features in another, the clusters can also be confidently assumed 
to correspond mainly to GNIS Summit and Ridge feature classes.  

Table II reports the means for all shape measures for the 
four sets of features derived from a combination of two original 
GNIS feature classes and two predicted clusters. It seems clear 
that Summit or Ridge features assigned to the corresponding 
majority Summit or Ridge cluster, respectively, are 
characterized by substantially larger shape measure values than 
features assigned to the non-corresponding (Summit to Ridge, 
Ridge to Summit) cluster.  
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The K-means clustering accuracy analysis presented in 
Table III reveals that 98% of features in one cluster are Summit 
and 94% in another are Ridge features, indicating that data-
driven clusters correspond strongly to GNIS Summit and Ridge 
feature classes. The most interesting finding from K-means 
analysis is the identification of 7,171 (21.5%) GNIS Summit 
and 475 (6%) GNIS Ridge features that were morphometrically 
more similar to features in the Ridge and Summit cluster, 
respectively.  

 

 
Figure 1.  Frequency distributions for roundness, elongation, solidity, and 

convexity shape measures for Summit and Ridge classes. 

 

Figure 2.  Correlation matrix summarizing correlations between shape 
measures for Summit and Ridge feature classes. 

As mentioned above, the means of shape measures are 
already much smaller for these minority features. The reason 
became apparent when the manually digitized polygons for 
these minority Summit and Ridge features were overlaid on 
USGS topographic maps (available as a basemap in ArcGIS 
Pro). Figure 3 shows example polygons for each type of 
minority feature. Whereas the minority Summit features are 
long and narrow, the minority Ridge features are not linear but 
shaped more like rounded/compact Summit features. The 
manual polygons are digitized based on labels found on 
topographic maps. The importance of generic parts of feature 
names played a vital role in originally classifying GNIS features. 
Still, the analysis here reveals that the choice of generic terms 

is not always reliable as an indicator of the geomorphometric 
characteristics of a feature. This will always present challenges 
in determining the semantic scope of GNIS feature classes. 
Indeed, the k-means algorithm performed admirably to isolate 
more than 7,500 of such specialized cases requiring more 
careful analysis of their shapes and possible reassignment to the 
other feature classes. 

IV. CONCLUSION 
This analysis clearly shows that the specific 

geomorphometry approach to GNIS enhancement can help 
guide the automation of feature extraction for both named and 
unnamed prominent landforms in the United States and other 
countries. Although descriptive statistics and K-means cluster 
analysis confirmed the usefulness of the chosen shape measures, 
the analysis presented herein is still limited and exploratory. 
Future work could reduce the correlation between shape 
measures and test transformations to reduce the skewness of 
some shape measures before statistically valid hypotheses about 
if and how GNIS features could be reclassified based on 
geomorphometric analysis of available polygonal 
representations, especially to use as training data in deep 
learning. The authors have also initiated work to understand 
whether (dis)similarities in shapes of features can be related to 
the generic terms in their names. A more comprehensive set of 
findings will be presented in a forthcoming journal paper, 
including more robust evidence based on inferential statistics.  

TABLE II.  MEAN STATISTICS FOR SHAPE MEASURES 

GNIS Count 
Mean statistics for Shape 

measures 
Com Rou Sol Con Elo 

Summit 33,304 0.66 0.69 0.91 0.97 0.60 
Ridge 8,006 0.28 0.34 0.67 0.91 0.27 

GNIS K-means  
Summit Summit 26,133 0.73 0.75 0.95 0.99 0.65 
Summit Ridge  7,171 0.37 0.46 0.75 0.90 0.41 
Ridge Ridge  7,531 0.26 0.32 0.66 0.91 0.26 
Ridge Summit  475 0.61 0.64 0.92 0.97 0.44 

TABLE III.  K-MEANS CLUSTER ANALYSIS RESULTS 

Confusion Matrix Accuracy Analysis 

 K-Means 
Cluster 

TP = True positive        FP = False 
positive 

TN = True negative      FN = False 
negative 

GNIS (Summit) 
Cluster 

(Ridge) 
Cluster 

Precision 
TP / (TP + FP) 

Recall 
TP / (TP + FN) Total 

Summit 26,133 7,171 0.98 0.78 33,304 

Ridge 475 7,531 0.51 0.94 8,006 

 Overall Accuracy: 0.81 41,310 
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Figure 3.  (Left) Examples of Summit features assigned by K-means to the 
cluster mostly dominated by Ridge features. (Right) Examples of Ridge 

features assigned by K-means to the cluster dominated by Summit features. 
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Abstract— Contextual merging of segments using spatial relations 
of the neighborhood and the geomorphometric variable of the 
neighbor segments is introduced as a method to improve the over-
segmentation of object-based analysis. The scope of the approach 
is to provide better candidates for the detection and delineation of 
landforms with simple geomorphometric signatures like sinkholes 
and aeolian closed depressions. The approach is simple and 
effective and can be implemented in many GIS software. We 
exemplify it for the aeolian closed depression from a part of the 
Romanian Plain by using elevation standard deviation to merge 
the segments of such closed depressions. While generally, these can 
be considered as concave features; actually, these have multiple 
shapes: a flat bottom surrounded by concave, straight, and convex 
parts. The results are promising, but the approach needs to be 
better framed in a GUI GIS environment to be implemented for 
specific landforms detection and delineation tasks. 

I.  INTRODUCTION 
Contextual spatial context is inherent in image classification 

and pattern recognition [1,2] and becomes essential in Object-
based image analysis for remote sensing [3-5]. Contextual 
merging of segmentation results is a well-known approach in 
geomorphometry [6,7], although yet with limited applicability 
(pixel proximity and hierarchical clustering). 

The present paper aims to assess the usability of the 
contextual merging of segments using the neighbors and their 
geomorphometric variables. The approach is considered useful 
because over-segmentation often happens when segments are 
obtained, and thus the geomorphometric signature is degraded. 
Or naturally, the shape is degraded by erosion or deposition. The 
method’s main strength is the ability to use geomorphometrical 
data of the segments as criteria to decide the merge, compared 
to only shape, texture, or distance. To exemplify the method’s 
usability, we use the case of closed depressions of aeolian nature 
that, despite being seen as concave in shape, actually have 
multiple forms: a flat bottom surrounded by concave, straight, 
and convex parts while incised in the flat plateau. This was 
investigated already as a reality for concave and convex features 
like sinkholes and aeolian closed depressions (deflation 
depressions or blowouts) [8]. 

II. MATERIAL AND METHODS  

A. Materials  
The DEM used for testing the proposed approach is a 

Copernicus DEM (COP-DEM30) crop at 20 m resolution 
covering the Găvanu-Burdea Plain in Southern Romania (Fig. 1).  

 

Figure 1.  COPDEM at 30 m resolution for the study area. 

B. Methods 
While segmentation and polygon manipulation can be 

implemented in many software, I have used SAGA GIS [9] and 
R stat [10] because they are open source, and the reproducibility 
and readability is assured.  

SAGA GIS watershed segmentation is a simple approach 
based on the ViGrA - Vision with Generic Algorithms 
(http://hci.iwr.uni-heidelberg.de) library [11] and is known to 
produce over-segmentation. Our objective here is different from 
dealing with these aspects here. 

The sf package [12] representation of spatial geometry 
allows the integration with other R stat packages for straight 
manipulation of statistical methods and implementing machine 
learning algorithms. The spatial geometry analysis functions of 
sf package are also used for neighborhood identification and 
merging. 

The neighbors are found with poly2nb function (https://r-
spatial.github.io/spdep/reference/poly2nb.html) and stored as a 
list of vector IDs.  

The descriptive statistics of the geomorphometric variables 
(minimum, mean, maximum, range, variance, standard 
deviation, percentiles) for every segment are computed in 
SAGA GIS with the tool and stored as attributes in the segments 
file. Additionally, shape attributes could be computed and used 
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if a certain shape is in the geomorphometric signature. I used 
only the descriptive statistics of altitude for the sample shown 
here. If the target landforms are influenced by various agents 
(water, air, ice), variables related to these agents could also be 
used (topographic wetness, drainage area, openness).  

 

Figure 2.  3D view of the shaded surface and the segments of slope (x10). 

Polygons are read and stored as an attribute table with a 
geometry column (“sf” and “data.frame” class in R). IDs are 
assigned in a new column starting from 1 to n. 

 Every neighbor segment geomorphometric values are 
stored as table columns (1 to m, where m is the maximum 
number of neighbors), and indexes can also be computed. 

The neighbor IDs list of vectors is filtered by the condition 
of geomorphometric variables, and only those fulfilling the 
condition will have the ID in the list. The rest of the IDs are set 
up to zero. 

The neighbors that have IDs in the list will be merged with 
the st_union function (https://r-
spatial.github.io/sf/reference/geos_combine.html). 

Duplicated geometries are then removed, and all the 
polygons that intersect each other are combined. Another filter 
can be set up during the final union. 

III. RESULTS  
In Figures 3 to 5, I show a closed depression formed by the 

segment with ID 1605 and its seven neighbors. Using the mean, 
standard deviation elevation values of all the neighbors, the 
segments that have neighbors with values bigger than 1 m are 
merged. In the case of the closed depression shown in Figure 3, 
the merging is performed as shown in Figure 5. 

In Figure 6, I show a zoom 3D perspective view of the 
closed depression represented in Figures 3-5. 

In the test, there was no further filtering based on 
geomorphometric variables. This would require the 
computation of the altitude statistics for the merged polygons. 
All the polygons that have intersections with other polygons are 
merged. 

IV. DISCUSSIONS  
The OBIA (Object-Based Image Analysis) literature showed 

that objects (superpixels, segments) are better candidates for 
performing land-cover classifications. For DEMs, this should 
also be true [13]. 

In multiscale situations, the object delineation might need a 
scalar approach, but the process is straightforward for specific 
“simple” shapes. 

 

Figure 3.  Example of a polygon and its identified neighbors. 

 

Figure 4.  Example of a polygon merging with a single neighbor. 

The limitations of object-based approaches are given by the 
over- or under-segmentation, so assessing these aspects is 
needed when using segments for classifications. Our objective 
here is to avoid dealing with the algorithmic aspects of these 
issues. Instead, the focus is on the ability to contextually merge 
adjacent segments based on their geomorphometric variables 
regarding the neighbors. 

The eCognition software has similar abilities to merge or 
grow neighbor segments. Still, it is limited to a single class and 
spectral values or segments shape characteristics 
(https://docs.ecognition.com/v9.5.0/eCognition_documentation
/User%20Guide%20Developer/4%20Basic%20Rule%20Set%2
0Editing.htm). The algorithms implemented in eCognition are 
closer to the post-segmentation or semi-automatic/manual 
refinement. 
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Figure 5.  Example of a polygon merging with all the neighbors. 

 

Figure 6.  Example of the closed depression (segments with boundaries in 
red) formed by the polygon with ID 1605 and its seven neighbors. 

Our approach is still straightforward in one iteration, but in 
this specific example can merge the segments of closed 
depressions pretty well. From this point on, new iterations can 
be used, or statistical models can be fitted to train a model for 
detecting and delineating closed depressions. The other merged 
features will need to be labeled in other classes. 

V. CONCLUSIONS  
The results are promising for the aeolian closed depression 

as a landform with a clear geomorphometric signature. For 
complex signatures, the complexity of the approach needs to be 
increased by adding iteration and other rules, but we are 
confident that this is achievable. The approach needs to be better 
framed in a GUI GIS environment to be implemented for 
specific landforms detection and delineation tasks. 

 

Figure 7.  The merged polygons (in red) after a first iteration for neighbors 
that have a mean, standard deviation of altitude bigger than 1.5 m. 
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Abstract— Tree uprooting plays a significant role in shaping 
the microtopography in forested areas. This process leads to 
the formation of 1) pit-mound topography (with adjacent pit 
and mound forms being a result of the tree uprooting) and 2) 
root plates (with undecomposed root systems and soil material 
attached to them). The increasing availability and accuracy of 
LiDAR point clouds enable producing high-resolution DTMs 
and DSMs. Such models can be applied to detect even small 
forms with a diameter below 3 meters. 
In the present project DTMs and DSMs were used to detect 
the location of 1) treethrow pit-mound pairs and 2) root plates 
of uprooted trees. Analysis was performed for selected 100x100 
m research plots situated within the Babia Góra National Park 
(BgNP; Western Carpathians, Southern Poland). We used an 
open-source point cloud from the Polish Institute of Geodesy 
and Cartography (density: 20 pts/m2). All steps of the analysis 
were automated with the use of R programming language. 
Closed contour lines can be used to detect both types of forms. 
For pit-mound pairs detection, we tested different DTM 
resolutions and contour line intervals to achieve the best 
accuracy of the proposed contour method (CM). In the case of 
root plate detection, the point cloud was reduced to the points of 
the last return of the laser beam to maximize the chances of 
catching the points that actually reflect the locations of root 
plates and trunks. A differential model (DM) was produced 
by applying double classification of ground reflections with the 
use of a cloth simulation function algorithm (CSF). A contour 
line of the height of 1 m calculated from the DM was used to 
extract the potential locations of root plates. 
The study has been supported by the Polish National Science 
Centre (project no 2019/35/O/ST10/00032). 

I.  INTRODUCTION 
Tree uprooting is one of the main processes shaping the 

forest floor microrelief [12] (Fig. 1). This process is driven 
mainly by hurricane-force winds, which cause the trees to fall. 
Trees may be damaged in two ways, i.e. 1) by stem breakage 
and 2) by uprooting. The stem breakage does not have an 
impact on the forest floor microtopography, while during 
uprooting, the soil and bedrock material attached to roots is 

uplifted in the root system [11]. The root plates formed in this 
way consist of i) undecomposed root systems and ii) soil and 
bedrock material. The subsequent process of the root system 
decomposition causes the soil and bedrock material to move 
down. This leads to a gradual disintegration of a root plate, 
which may last from several years to several decades. The 
disintegration process is controlled by climate, soil properties, 
and root plate volume [10]. Finally, a treethrow mound forms 
as a remnant of the root plate. In most cases, a treethrow 
mound has an adjacent pit, which was created during tree 
uprooting in the place previously occupied by the tree root 
system. Such neighboring convex and concave forms indicate 
the place, where the tree was uprooted and create the so-called 
pit-mound topography [8]. The entire process of pit-mound 
topography formation can be considered an example of 
hillslope biomorphodynamics, i.e. the impact of living 
organisms on the creation and evolution of landforms and 
soils [11, 13]. 

Currently, the availability of accurate Light Detection and 
Ranging (LiDAR) data is growing. Hence, Digital Terrain 
Models (DTMs) and Digital Surface Models (DSMs) can be 
produced with very fine, submeter resolution. This allows the 
application of this data to detect small microtopography forms  

with diameters below 3 m. Therefore LiDAR data may be an 
excellent source of information about the landforms resulting 
from the tree uprooting process. 

Under the present project, we investigated the application 
of DTMs and DSMs to detect the location of 1) pit-mound 
pairs and 2) root plates of uprooted trees. We made an attempt 
to automate the detection process with the use of R 
programming language. Analysis was conducted for selected 
100x100 m research plots located within the Babia Góra 
National Park (BgNP; Western Carpathians, Southern Poland). 
We applied open-source point cloud data from the Polish 
Head Office of Geodesy and Cartography (density: 20 
points/m2). We used a closed contour lines approach to extract 
the location of forms. This approach was previously applied 
to detect karst landforms [4] and surface depressions [14]. 
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Figure 1. A – The process of tree uprooting and pit-mound topography formation (after [7]). B – Uprooted tree with a root plate and stem (Photo. J. Godziek 2022). 

 
Fig. 2. Workflow of the pit-mound topography and root plates detection methods. 

II. DETECTION METHODS AND RESULTS  

A. Pit-mound topography 
For pit-mound topography detection, we proposed the 

contour method (CM) allowing extraction of the location of 
individual pit-mound pairs [3] (Fig. 2). We produced DTM from 
LiDAR data. We tested three DTM resolutions: 0.5 m, 0.25 m, 
and 0.1 m. After that, we delineated contour lines and computed 
the length of each contour line. Three contour line intervals were 
tested: 0.25 m, 0.1 m, and 0.05 m. Then we filtered contour lines 
by selecting only those with the length within a particular 
interval. We checked three length intervals: 1.5 – 25 m, 2.5 – 20 
m, and 3.5 – 15 m. In the next step, we converted selected 
contour lines into polygons. Finally, we classified these 
polygons into objects representing convex and concave forms by 
analyzing the location of the maximum and minimum elevation 
within the polygon. 

We prepared the validation dataset by recognizing pit and 
mound forms manually, „on-screen”. The recognition was based 
on several criteria, i.e. 1) the values of the Topographic Position 
Index (TPI), 2) the characteristic shape of contour lines between 
adjacent pits and mounds, indicating the formation of both forms 
as a result of a single tree uprooting. We marked 74 pit-mound 
pairs in two research areas. 

The next step was to compare the results of the CM with the 
validation dataset. Out of 27 tested variants of the CM, the best 
one (1st) reached accuracies around 95% for pits, 90-93% for 
mounds, and 85-90% for pit-mound pairs. For the 1st variant, we 
performed additional computations. We selected adjacent pits 
and mounds, located at a distance below 1.5 m. This enabled the 
assignment of a single pit to a single mound. Then we plotted 
the probable locations of pit-mound pairs on the map. The entire 
analysis described above was automated with the R script. 
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B. Root plates of uprooted trees 
To obtain validation data on root plates location, 

measurements were carried out in the area of a forest stand 
damaged by the windstorm in November 2004 and strictly 
protected since 2005 [15]. On two research plots, we measured 
the location of 205 root plates using a GNSS receiver with an 
accuracy of 0.05 m. These measurements enabled us to estimate 
the accuracy of the proposed detection method.  

We observed that the root plates of uprooted trees are visible 
in the LiDAR point clouds. To maximize the chances of catching 
the points that actually reflect the locations of root plates and 
trunks, we selected only the points marking the last return of the 
laser beam. To extract the location of root plates we performed 
double classification of ground reflections using the cloth 
simulation function (CSF) available in the lidR package [16] 
(Fig. 2). In the first classification we applied default parameters 
of the CSF algorithm and as a result we obtained DTM. In the 
second classification, we changed the parameters of the CSF 
algorithm (sloop_smooth = T, class_threshold = 3). The 
outcome of the computation was the DSM representing terrain 
surface, root plates, fallen trunks, and dense understory 
vegetation. Then we produced the differential model (DM) using 
the formula: DM = DSM – DTM. All computations were 
performed in a spatial resolution of 0.25 m. 

We computed the contour lines of the DM in the interval of 
0.1 m. Then we visually inspected the shape and layout of the 
contour lines of the root plates. We observed, that the contour 
line of the height of 1 m closes on the majority of root plates. 
We decided to use this contour line to extract the location of root 
plates. We converted the contour of the height of 1 m into 
polygons. We excluded from further analysis small polygons of 
the area below 0.2 m2. Then we classified polygons into „root 
plates” and „false positives” using GNSS field measurements. 
The next step was to filter polygons to decrease the number of 
false positives. Therefore for each polygon, we calculated the 
following parameters: area, perimeter, the distance between the 
outermost vertices of the polygon boundary, polygon 
compactness index [1], zonal statistics of the DM (maximum, 
minimum, average, range, standard deviation), and 
morphometric indices (circulatory ratio [6], elongation ratio [2], 
hypsometric integral [9], and relief ratio [13]). For 
morphometric indices, we used values of the DM as height and 
the distance between the outermost vertices of the polygon 
boundary as „catchment” length. Then we analyzed the 
distribution of values of the above-mentioned parameters on the 
box plots. For each parameter, we produced two box plots 
considering two groups of features: root plates and false 
positives. We performed also visual, „on-screen” analysis of the 
values of particular polygons. Finally, we decided to select only 
polygons of area greater than 1 m2 and polygon compactness 
index smaller than 1.9 (Fig. 3). 

Accurate boundaries of root plates are required to extract the 
volume of these forms. To delineate boundaries, we created a 1 
m buffer along the selected polygons representing the contour 
lines of the height of 1 m. Then we reclassified the DM. We 
assigned the value „1” to all pixels greater or equal to 0.2 m and 
the value „0” to all other pixels. We polygonized such 
reclassified raster and removed all polygons located below 0.2 
m (with value „0”). Then we performed an intersection between 
1 m buffers and polygons with value „1”. Finally, we simplified 
and smoothed the shape of the resulting polygons. 

Initial results indicate quite a high accuracy of the proposed 
root plate detection method for the selected area of interest. Out 
of all 90 finally selected polygons, 60 were marked in the field 

as root plates and 30 are false positives. Hence the accuracy of 
the proposed method can be estimated at 66%. 

III. CONCLUSIONS 
Both proposed methods achieved an accuracy above 60%. 

The methods perform well in the selected study area, however 
concerning the concept of the area of applicability [5] they are 
spatially limited. Therefore further testing on other areas and 
with different datasets is required. The results are strongly 
impacted by the quality of the point cloud data used in the study. 
The point cloud density of 20 pts/m2 enables the recognition of 
microforms of diameter 1-3 m created due to the tree uprooting. 
Presumably point clouds of smaller densities do not enable such 
detection. The DTM resolution does not exert a significant 
impact on the detection outputs. To detect microforms, the 
contour line interval should be significantly smaller than the 
height of the forms. The methods presented in this paper may be 
applied to assess the scale and impact of the tree uprooting 
process in mid-latitudes forests and can be used in research in 
geomorphology, soil science, and forest ecology. 

 
Fig. 3. Distribution of the values of area and polygon compactness index – 

data for polygons extracted from the contour line of the height of 1 m. Mean 
value marked by a triangle. 
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I.  INTRODUCTION 
Dense DEM/DTM from LIDAR tend to become an 

overarching data for environmental sciences particularly those 
requiring an accurate knowledge of the relationships between 
landforms and hydrological, so to say hydrogeomorphology. 
Herein, the focus is on a specific hydrogeomorphological 
processing of the forthcoming EEA-10 Copernicus DTM 
covering all EU (Figure 1). For testing purpose, a "pseudo" 
EEA-10 DTM was generated by undersampling at 10 meters 
resolution from the RGE ALTI® at 1 meter resolution available 
all over France (® Institut Géographique National, IGN).                                             

An ad hoc method (SEAD) is tested to minimize the 
smoothing effect of undersampling on the landforms especially 
along the crest and the talweg lines. Then, an innovative sub 
surface percolation algorithm (DRAMP) derived from Beven's 
index is tested with this "RGEAlti-SEAD-10m" on the peri 
alpine Mediterranean catchment basin of the Duyes in the 
Southern Alps. A study of the sensitivity of 
hydrogeomorphological landform depictions (i.e. alluvial fans, 
gullies, anastomosing channels, scree slopes, etc.) according to 
resolution shows that 10-meters resolution with decimeter 
precision suggesting that the forthcoming EEA-10 DTM should 
be a promising and more accurate product for various 
environmental issues along the river beds and hazards such as 
floods and landslides. 

II. THE DTM DATA 
The DTM under-sampling method SEAD (Sous 

Echantillonnage ADaptatif [5], adaptative undersampling) from 
dense to coarser resolution is purposely suitable for 
hydrogeomorphological applications. Taken a given spatial 
resolution of µ=1 meter of the RGEALTI® DTM, the aim is to 
resampled it with µ = 10 meters to simulate a surrogate EEA-10 
DTM. Instead of usual resampling methods based on averaging 
elevations and therefore smoothing the topography, SEAD is 
"adapting" the elevation at coarse resolution taking into account 
the topographic pattern at fine resolution. For instance, a summit 
or a crest should remain as such in the undersampled topography 

with high elevation compare to their surrounding points and 
vise-versa for pit, talwegs and valley. This means that it preserve 
better the major orographic patterns such as crest and talweg 
lines as well as it minimize the smoothing of hillslopes. 

 
Figure 1 

 

 
Figure 2 

Taking the example of a subset of 15 by 15 meshes (µ=1) in 
Figure 2, the objective is to compute the elevation on the central 
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meshe of a 3x3 undersampled window with (µ=5). For the nine 
5µ meshes, the min, average and max elevation are calculated 
from the 15x15 1µ meshes. 

A score Sz is computed according to the relative elevations 
of min, average and max of the neighboring meshes compared 
to the central one. 

Sz=Sminz+Saverz+Smaxz with Sz Є [0..24]      Eq. 1 

If Sz =0, the central part corresponds to a well defined 
summit and the elevation Z for meshe(i,j) will be equal to 
MaxZ(i,j). Conversely, a value of 24 for Sz means that it is 
clearly a depression area (pit, deep valley, etc.) with elevation Z 
for meshe(i,j) equal to MaxZ(i,j). In other cases, it comes: 

Z[i,j] = MaxZ(i,j) - (Sz./24).(MaxZ(i,j)-MinZ(i,j)) 

with Z[i,j] Є [MinZ(i,j).. MaxZ(i,j)]        Eq. 2 

For instance on the example in Figure 3  corresponding to 
a valley, the score Sz is equal to 18. Therefore, the elevation Z[i,j] 
between MinZ(i,j) and MaxZ(i,j) but closer o the minimum 
value (Z[i,j]=MaxiZ(i,j)-+( 18/24) (MaxZ(i,j)-MinZ(i,j)). 

 
Figure 3 

 

For comparison purposes, two DTM at 5 metres resolution 
(μ=5 m) are undersampled with two methods: Zaver with the 
averaged value (AveZ(I,j)), Zsead with the method SEAD 
explained before. The differences of elevation (ΔZ) are given on 
Map 1B (Resolution 5 m) in the downstream part of the Riou 
torrent with various hydrogeomorphological landforms as 
shown on Map 1A (REGALTI® full resolution 1 m).  

ΔZ = Zsead - Zaver 

Purposefully with the SEAD method, the elevations of crest 
and summit tend to be “positively” preserved while the elevation 
for talweg, creeks and river bed are instead “negatively” 
maintained. 

III. SIMULATION OF SUB SURFACE PERCOLATION 
The method that is presented is a simplified variant of the 

Beven's Index [1][2][9] and applied on the catchment basin of 
the Duyes valley (150 km², sedimentary rocks and alluvial 
deposits, peri alpine Mediterranean climate, Map 2). 

This catchment offers a large palette of hydrodynamic 
landforms such as glacis, upstream reception basins, gullies, 
alluvial fans, fluvial terraces, scree slopes, stony river beds, etc. 
developed on geological structural features of the Digne thrust 
sheet (Map 3). 

The Beven’s index also also called the Topographic wetness 
This catchment offers a large palette of hydrodynamic landforms 
such as glacis, upstream reception basins, gullies, alluvial fans, 
fluvial terraces, scree slopes, stony river beds, etc. developed on 
geological structural features of the Digne thrust sheet. 

 
Map 1 

 
Map 2 

The Beven’s index, also known as the Topographic 
wetness index (Itw=Log(α)/Tan(β), states two basic 
assumptions about sub-surface percolation within pervious 
substrates: 

- It is proportional to the drained surface Ln(α) in the sense 
of multidirectional drainage weighted for each direction 
according to the difference in level. It is an estimate of the 
probability of water flowing through a specific point; 

- It is contrary wise proportional to the local slope Tan (β).  

In this study, the parameter α will be used without β because 
the present purpose is the multidirectional sub-surface 
percolation mapping for hydrogeomorphological applications 
(Cf. Map 3 with RGEAlti-SEAD-10m DTM) and not for the 
parametrization of potential saturation of soil (or “source area”) 
as Itw is usually used for distributed and physical based 
hydrological modelling like TOPMODEL and its variants.  
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This simplified variant of the Beven’s index is called the 
DRAMP method (DRAinage Multidirectionnel Probabiliste [5], 
Probabilistic multidirectional drainage). Thus, Idramp = Log(α). 

 
Map 3 

 

The computation of α can be explain on the example of 
Figure 4A. It is more complex than the usual “mono directional” 
surface flow D8 based on steepest descent as shown in Figure 
4B or purpose like methods [3][7][8][11]. This “oil cloth” D8 
flow routing generates only one drainage line from a given point, 
for instance from the “source” point at 105 m down to the “outlet” 
point at 1 m. From the same source point with the DRAMP 
method, many drainage lines are possible as shown on Figure 
4C and depending of the slope gradient pattern. This 
corresponds to a “multi directional” sub-surface flow routing 
that could assimilated as a “sponge” like superficial reservoir. 
The amount of water percolating down to the outlet point has a 
strong probably to be inferior to the infiltrated water into the 
source point. 

 
Figure 4 

 

The Figure 5 detailed the probability of percolation from the 
source point to the outlet point along the steepest descent line as 
defined in Figure 4B. It comes that only 16 % percolates from 
the source down to the outlet. The other 84 % follow others 
multiple diverging flow lines, some of them not flowing through 
the outlet. On this example, the value of α will be superior to 16% 
and inferior to 100 mm. The overall computation with a shifting 
3x3 window consider each point as a source and an outlet. 

 
Figure 5 

 

Starting from the RGE ALTI®, this allows comparing the 
effect of SEAD undersampling 5, 10 ("pseudo” DEM EEA-10) 
and 25 meters resolution on sub-surface percolation simulation 
with the DRAMP algorithm [5]. A sensitivity analysis of 
hydrogeomorphometric patterns and textures rendering from the 
DRAMP method is given in Map 4 on the same area of the 
lower part of the Riou catchment (cf. Map 1A and Map 3). 
The percolation patterns are clear at 5 and 10 meters 
resolution with well-depicted divergent percolations on the 
alluvial fan and in the torrential river bed. Conversely, the 
rendering becomes fuzzy at 25 meters resolution with not so well 
depiction of landform units such as the limit between the main 
river bed of the Duyes and the alluvial fan of the Riou. 

The Map 5 gives a more detailed hydrogeomorphological 
analysis of the various landforms unit identifiable at 5 meters 
resolution and still detectible at 10 meters resolution with the 
“pseudo” COP-EEA-10. 

IV. CONCLUSIONS 
The previous simulation and analysis suggests that the 

forthcoming Copernicus DEM COP-EEA-10 covering 29 
countries of Europe (cf. Map 1) should be an accurate product 
for mapping and semi-automatic detection of fluvial and 
torrential landform. This should contribute to a standardization 
of hydro-geomorphological mapping and parametrization of risk 
evaluation and mitigation for flooding and landslides hazards at 
the European scale. 
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In France, the undersampling of the RGE ALTI® (or 
LITTO3D on some overseas territories) at 5 or even 10 meters 
with appropriate method such as SEAD could back up the steady 
national policy on the integrated management of rivers 
following the Water Framework Directive (WFD 2000) and its 
translation into French law (Law on Water and Aquatic 
Environments, LEMA, 2006). 

 
Map 4 

 

 
Map 5 

 

In the regions of the French Southern Alps, Haute Provence 
and probably other Mediterranean mountainous area, the 
ongoing impact of river beds incision due to reforestation and 
abandonment of agricultural land since many decades [6-7] is 
manifolds: lowering of alluvial water table, erosion of alluvial 
terraces and undermining of dykes and bridge piers. These facts 

pledge for an accurate and continuous GIS monitoring of the 
“The green and blue network” (trames verte et bleue) with Lidar 
data.  

The DRAMP method could be one asset for those actions. 
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Abstract— In recent years, flood disasters have become more 
frequent all over the world. It is of great importance to analyze 
flood disasters by remote sensing image and topographic data. 
Space-based synthetic aperture radar (SAR) is a powerful tool for 
monitoring flood conditions over large areas without the influence 
of clouds and daylight, but it cannot reflect the cause and trend of 
flood formation. The combination of terrain data and remote 
sensing data has potential utility in mapping and analyzing large-
scale surface floods caused by heavy rainfall. Taking the flood 
disaster in Zhengzhou, China in 2021 as an example, this paper 
attempts to analyze the topographic and hydrological 
characteristics based on the Gaofen-3 (GF3) SAR image and 
FABDEM data, so as to understand the trend of flood inundation. 
The experiment demonstrates that combining digital elevation 
model (DEM) data can facilitate mutual validation of remote 
sensing image flood monitoring and analysis of urban water flow 
mechanisms. 

I.  INTRODUCTION  
Due to climate change and urbanization, natural disasters are 

occurring more frequently and affecting more people. A report 
published in 2020 by the United Nations Office for Disaster Risk 
Reduction (UNDRR) confirms that extreme weather events will 
dominate the disaster landscape of the 21st century [1]. Between 
2000 and 2018, the world experienced 913 major flood disasters 
[2]. How to realize pre-disaster warning and post-disaster rapid 
detection of floods is very important. 

An accurate mapping of the disaster situation can be 
achieved by extracting flooded areas, and the results combined 
with pre disaster geographic data can be used to evaluate the 
post-disaster damage losses. 

Flood disasters are often widespread and associated with 
cloudy weather. Synthetic aperture radar (SAR) is one of the 
most effective tools for flood emergency monitoring due to its 
all-day, all-weather earth observation capability. And SAR is 
very sensitive to surface roughness and other characteristics, so 
it has high accuracy to extract water extent and to obtain flood 
range by comparing changes between water bodies before and 
after disasters. 

The most basic water extraction method is image 
classification. Sui et al. adopted multi-scale level set 
segmentation and OTSU thresholding method to realize 
automatic water extraction of SAR image, effectively improving 
the detection accuracy of flood inundation area [3]. In addition, 
because the electromagnetic waves generated by the radar are 
reflected from the water by the mirror, the water body has low 
brightness in SAR images. This is reversed in forested areas, 
where the electromagnetic waves emitted by the radar are 
reflected off the water surface and hit tree trunks and canopies, 
increasing the backscatter strength. 

Flooding is a complex process involving meteorological 
precipitation, hydrology, topography and other factors. 
Although the remote sensing image has the characteristics of 
large coverage and fast data collection in flood disaster 
monitoring, the development of flood is closely related to 
topography and geomorphic information, while the remote 
sensing image only focuses on surface distribution 
characteristics. 

It is very important to utilize the topographic and 
geomorphic features for flood hazard risk assessment. By using 
DEMs to analyze hydrological features and hydrodynamic 
model, flood simulation can be realized to evaluate the 
possibility of flood disaster [4]. Compared with only relying on 
remote sensing image to obtain water distribution information, 
DEM and other data fusion methods can effectively improve the 
accuracy of large-scale water identification. Li et al. effectively 
combined DEM, Landsat, MODIS and water occurrence data to 
observe surface water changes with finer spatial-temporal 
resolution [5]. 

This paper combines SAR and DEM data to analyses the 
distribution of flood water bodies, and taking the flood disaster 
in Zhengzhou, China in 2021 as an example. We use the flood 
area extracted from the Gaofen-3 (GF3) SAR images and the 
hydrological features extracted from the FABDEM to try to 
analyses the distribution of the flood inundation. 
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II. METHODS 
The study area is located in Zhengzhou City, Henan Province, 

China. Most of this area is in the plain, the Yellow River is in 
the north of the Zhengzhou city, and the southwest corner of the 
city is a high mountain (Figure 1). On 20 July 2021, Zhengzhou 
experienced severe flooding due to several days of heavy 
precipitation. The long-term rainfall weather caused the optical 
images to be severely obscured by clouds. Therefore, China's 
disaster reduction department urgently programmed GF3 
satellite to obtain the time-series SAR images of the affected 
areas in time. 

The GF3 satellite is a multi-modal imaging SAR sensor, 
launched in 2016, with single-polarization, dual-polarization 
and full-polarization modes. The GF3 data used in this paper are 
dual-polarization (FSII mode) images on July 24, 2021, HV 
polarization channels, and the spatial resolution is 10m. Image 
segmentation [3] is used to extract the water range of SAR 
images, and the results are shown in Figure 2. The GF3 SAR 
image was used to extract the pre-disaster and post-disaster 
water body areas in the study area, and the flood distribution 
areas could be identified through comparative analysis. 

Multi-temporal SAR images can be used to monitor the flood 
range, but there are some errors in the extraction results of urban 
water bodies, because they are interfered by SAR image noise, 
and the distribution of surface water caused by rainfall cannot be 
analyzed only depending on the flood extent. 

In order to analyze the topographic and hydrological features 
of the study area, the river network and basin features were 
extracted using FABDEM DEM data [6]. This data is a global 
map of elevation with buildings and forests removed at 1 arc 
second grid spacing. The hydrological analysis module of 
ArcGIS software was adopted for the hydrological 
characteristics.  

 

Figure 1. Location map of the study area in Henan Province, China. 
 

The distribution of water network and watershed is obtained 
by calculating the flow direction and flow accumulation data of 
the study area. Then, the hydrological characteristics and 
inundation range are combined to analyze the flood distribution. 

 

Figure 2. Water extraction results of GF3 image. 

 

 
Figure 3. Flood distribution map of the study area. 

III. RESULTS AND DISCUSSION 
In the way of post-classification comparison, multi-temporal 

SAR was used to extract the flood range, as shown in Figure 3. 
The blue area is the distribution range of water before the 
disaster, and the red area is the flood water bodies on July 24, 
2021. There are more flood water bodies on both sides of the 
Yellow River, and the width of the river surface increases 
significantly due to the flood. A large area of flood water bodies 
has appeared in the north-east of Zhengzhou. Flood water bodies 
are also widely distributed around the Zhengzhou city, showing 
that urban waterlogging is very serious. 

Figure 4 is the DEM elevation map of the study area. The 
terrain of the study area slopes gradually from southwest to 
northeast, and flooding occurs on both sides of rivers in the 
southwest region. A large area of flooding and waterlogging 
occurred in urban areas with relatively flat terrain, and water on 
urban roads is shown as a linear red area in the image. The city 
of Zhengzhou, which is located in the plain area, experienced a 
large area of urban waterlogging after heavy rainfall. 
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Based on the 30m resolution DEM data of the study area, the 
river distribution obtained from the flow direction and flow 
accumulation is shown in Figure 5. Light blue is calculated to 
get the distribution of the river network in the study area, the 
dark blue area is permanent water and the red area is flood water. 
It can be seen that the surface stream in the study area mainly 
originates from the mountainous areas in the southwest and west 
of the city, and most of the rivers flow into the southeast of the 
low terrain after passing through the city. 

 
Figure 4. The elevation of the study area. 

Figure 5. River networks and drainage basins in the study area. 

 Most of the flood water flows to the southeast of the study 
area after the rainfall, which is consistent with the remote 
sensing detection results, and most of the flood water is 
distributed in the eastern part of the city. By extracting the 
drainage basin of the study area (Figure 5), it can be seen that 
the flood extent is concentrated in the drainage basin mainly in 
the urban plain. The eastern part of the city is dominated by 
agricultural land and these areas have experienced extensive 
flooding. The combination of geomorphic data and flood data 
can be used to preliminarily analyze the development state of the 
flood after the rainfall, which is of practical value in 
understanding the development of the flood disaster. 

 
Figure 6. The basin of the study area 

In 2006 researchers conducted a project to predict surface 
water pooling under different rainfall in Edmonton, Canada. In 
this work, the urban elevation is modeled with high precision, 
and the urban surface water pooling under different rainfall 
conditions is simulated very well based on the hydrology 
corrected DEM [7]. The report divides flood flow in urban 
environments into two mechanisms: one is when river water 
overflows from river channels and accumulates in low-lying 
areas, and the other is when surface water accumulates in low- 
lying areas from upland area. 

In order to analyze the mechanisms of water flow in the study 
area, we combined flood inundation data and urban geographic 
data (such as buildings, green space, rivers, etc.) to analyze the 
location relationship between the inundation area and 
surrounding geographic elements (Fig.6). It can be found that 
the inundation in the study area is mainly caused by surface 
water pooling in low-lying areas (Figure 6.B), and the 
inundation area caused by river overflow is mainly distributed 
in the southwest area of the city (Figure 6.A). 

However, there are still some problems to be solved in the 
evolution process of urban waterlogging based on remote 
sensing images and DEM data. Due to the complexity of the 
surface of urban areas, SAR image cannot meet the requirements 
of fine extraction of urban inundation area. In addition, the 
combination of remote sensing images and topographic data has 
not been able to achieve a more objective and automated 
analysis of urban area flooding mechanism. 

IV. CONCLUSION  
In this paper, SAR image and DEM data are used to analyze 

the geomorphic features of the flood inundation area in 
Zhengzhou, Henan, China in 2021. The results show that heavy 
rainfall causes severe waterlogging in the urban areas and tends 
to flow southeast of the city. In the future, it is necessary to use 
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topographic data with higher resolution remote sensing images 
to realize more accurate analysis of urban flood inundation. 
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Abstract— The Calwood Fire burned in Boulder County, Colorado 
from October 17 through November 14 2020. The vegetation types 
in the area greatly influenced the spread and severity of the fire. 
The conifer forests burned most severely and the fire died when it 
ran out of fuel in the grasslands. The elevation of the land had very 
little effect over initial burn severity but the areas of lower 
elevation recovered faster than the areas of higher elevation. The 
areas of high slope burned less severely but recovered slower than 
areas of low slope. The areas of high roughness burned less 
severely in the initial fire than the areas of low roughness but did 
very little to affect the regrowth in the area. 

I. INTRODUCTION 

From October 17, 2020 to November 14, 2020 the Calwood 
Fire burned 40.9 km² in Boulder County, Colorado (Figure 1).  
The ignition source of the fire is unknown and strong winds at 
the time of the fire allowed it to spread rapidly across the 
landscape [1]. The fire began near the Cal-Wood Education 
center and spread east towards Boulder and U.S. Route 36 [2]. 
This study analyzes how topographical features like slope, 
roughness and elevation and the existing vegetation types in the 
area affect the severity of the initial burn and the regrowth rate. 

II. DATA & METHODS 

LandFire [3] provided the existing vegetation types of the 
affected area (Figure 2).  The difference normalized burn ratio 
(dNBR) images are made with imagery from the Sentinel-2 
satellites. NBRs [4] were created for 4 dates spanning the 
duration of the fire and the regrowth over the next two years. 
Each of the three NBRs from after the fire’s ignition were 
subtracted from a control NBR from, 28 September 2020, before 
the fire started (fig. 3, 4).  

The elevation, slope and roughness figures were created 
from a 1m digital terrain model (DTM). A hillshade map (fig. 
5A), aspect map fig. 5B, using symbology after [5], and a 
roughness grid (fig. 5C) using a 3x3 window with the standard 
deviation of the slope [6]. 

The 1-meter DTM was masked to match the individual burn 
categories of the dNBRs and the data was compiled into 
histograms for corresponding to the elevation, slope, and 
roughness of the Calwood fire area (Figure 6) 

III. RESULTS 
Over half of the area is covered by two vegetation types: 

southern Rocky Mountain ponderosa pine, 49.9%, and the 
southern Rocky Mountain dry-mesic montane mixed conifer 
forest and woodland, 13.44% (Figure 2). The eastern border and 
southernmost point of the burn area are covered mainly in four 
types of grasslands and shrublands which cover 21.98% of the 
burn area (Figure 2). 

 

Figure 1. NIR images of the Calwood Fire burn area on 01 Oct 2020 (top) and 
23 Nov 2020 (bottom). (Planet Imagery’s Super Dove satellites with 3m 

resolution) 
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Over the two-year regrowth period the reduction in the high 
severity burn area goes from 38.4 km² in 2020, to 16.5 km² in 
2021, and 4.3 km² in 2022 (Figure 3). The apparent unburned 
area actually decreases from 41.4 km² in 2021 to 17.7 km² in 
2022 (fig. 4) which also happens with the moderate high severity 
burn and the unburned area from 2021 to 2022 (fig. 3). The 
reduction in the healed land areas as the land recovers could be 
a result of the bin sizes used to process the data and create the 
dNBRs or a less productive spring and summer and therefore 
less vegetation than the reference NBR in September 2020.  

The areas of high severity burn in 2020 occur most 
prevalently in the center and western side of the area. The areas 
of lower severity burn in 2020 occur around the southern and 
eastern sides of the burn area (fig. 3a). The regrowth occurs 
faster in areas where the burning was less severe with few areas 
of high severity burn remaining in the western half of the burn 
area by 2022. 

 

 

 
Figure 2. LandFire 2020 existing vegetation with categories over 2% labelled.  

 

 
Figure 3. Calculated burn area and recovery in km2 from dNBR maps in 

Figure 4. 
 

The elevation of the area is higher in the west with values 
around 2600m and lower in the east with values closer to 1800m 
(fig. 5A). The Colorado flatirons lie in the areas of lower 
elevation in the east (fig. 5A). The roughness identifies the 
location of prominent ridges and valleys throughout the burn 
area, the majority of which fall in the western half of the area 

(fig. 5C). The highest roughness values are around 25% and are 
located along the valleys between the mountains in the western 
section of the burn area and just north of where the fire 
originated (fig. 1 and 5C).  

 

Figure 4. dNBRs created from Sentinel-2 images. All images were subtracted 
from an NBR of the area from 28 September, 2020. 

 
Figure 6 shows the geomorphometric characteristics of the 

burn and recovery areas immediately after the fire and the next 
two years. The elevation data show very little difference 
between the categories in 2020 when the fire burned; the areas 
of high severity burn averaging to 2183.2m and the unburned 
areas averaging to 2148.8m. In 2022 after almost two years of 
regrowth the average elevations get further from each other with 
the remaining areas of high severity burn averaging 2250.7 m, 
the areas of low severity burn averaging 1990.6m and unburned 
areas averaging 2025m. Aspect shows that the strong peaks with 
easterly aspect (Figure 6) corresponding with the preferred 
habitat of the Ponderosa Pines (Figure 7). 
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Figure 5. USGS 3DEP DTM data: (A) hillshade, (B) combined aspect and 
slope, (C) roughness computed from standard deviation of slope in a 3x3 

window. 
 

 
Figure 6. Elevation, slope and aspect histograms for the post fire dNBRs for 

four categories describing the areas of high severity burn, moderate high 
severity burn, low severity burn, and unburned. 

 

 
Figure 7. Elevation, slope and aspect histograms for the vegetation types 

found in the burn area in 2020 (from Landfire EVT). 
 

The slope data shows lower slopes in the more severely 
burned categories in 2020 (37.3% and 35.57%), 41.7% in areas 
of low severity burn, and 45.3% in the unburned areas. In 2022 
the slope values of the high severity burn areas averaged to 44.5% 
and the unburned areas 39.78%.  The roughness of the area 
affected the severity of the burning similarly to the slope in 2020: 
high severity 3.95% and unburned 6.3%. As the two years 
passed the range lessened and in 2022 the roughness values vary 
less; high severity burn averaging 4.1% and the unburned 
averaging 4.9%, so the rougher areas recovered. 

IV. DISCUSSION AND CONCLUSIONS 
Vegetation type had the most effect on the burn severity of 

the Calwood Fire. The ponderosa pines and southern Rocky 
Mountain dry-mesic montane mixed conifer forest covered a 
large majority of the area and sustained the highest severity 
burns (fig. 2 and 4). The dry-mesic montane conifer forests grew 
on the uphill slopes and remained the most severely burned in 
2022 (fig 2, 3, and 4). Both types of trees are most susceptible to 
burning in the spring and fall when their needles are the driest, 
with the Calwood Fire in October 2020.  

The shrub and grasslands sustained less servere fire damage 
and regenerated more quickly than the forested area. The 
vegetation regrowth was observed in the dNBRs however these 
do not identify the type of vegetation that has returned to the 
highly burned areas and is not an indicator of the health of the 
ponderosa pine forests. The early regrowth could be grasses and; 
restoration efforts in the Calwood burn scar have already begun 
in an effort to replenish the ponderosa pines [1]. 

The analysis of the burn severity in the dNBRs when linked 
to the elevation, slope, and roughness maps allows consideration 
for the relationship between the factors. Elevation had little 
effect during the initial burn, and the lower elevation areas 
regrew faster. The areas of lower elevation were able to recover 
more quickly than those of higher elevation, likely because the 
grasses that inhabit the lower elevation areas can regrow faster 
than the trees found at the higher elevations. 

Initially areas of lower average slope were more severely 
burned than areas of higher average slope but regrowth occurred 
faster in areas of lower average elevation. The fire was likely 
able to spread easier through the forest in areas where the trees 
were on even ground and their flammable foliage was at the 
same height. Additionally, it is likely that there was less 
vegetation on the areas of higher slope even before the fire as the 
conditions are more competitive [7]. On slopes the fire would 
have had a harder time jumping from tree to tree. During 
regrowth it was likely easier for the vegetation to regrow in 
flatter areas of less stress where there was less erosion or chance 
of landslides [7].  

The roughness data in 2020 from the initial fire shows that 
the areas of higher burn severity had much lower roughness. The 
areas with lower roughness were affected more greatly during 
the initial burn than the areas with larger roughness. When the 
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data from 2022 is considered there is virtually no difference in 
the average roughness showing that it has little to no effect on 
the regrowth of vegetation. 
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Abstract—We propose a floodplain detection and delineation 
workflow based on the Copernicus DEM. It involves watershed 
segmentation of slope and a machine learning algorithm - 
Multilayer Perceptron (MLP) model, for the geomorphometrical 
variables of the segments. For the method’s accuracy, spatially 
separated training and testing areas were used to assess the 
generalization power. Seven classes of landforms were labeled to 
allow the MLP model to statistically identify the flat floodplain 
class in the feature space compared to the adjacent channels, 
hillslopes, and levees. The confusion matrix data shows good 
generalization power with 94% accuracy for the floodplain class 
detection. The results show promising perspectives to solve the 
problem of quaternary deposits mapping and flood risk 
assessment. 

I. INTRODUCTION 
Floodplains and their morphology, including river channels 

and fluvial terraces, are important landforms with practical 
implications from many perspectives: quaternary 
geology/geomorphological mapping, flood risks, and planning. 

The availability of a medium-resolution Digital Elevation 
Model (DEM) like Copernicus DEM opens up the possibility of 
delineating channels and floodplains with better accuracy than 
with SRTM or other similar DEMs. 

We used a machine learning approach to classify the 
floodplain slope segments. Specifically, we used Multilayer 
Perceptron (MLP), a feedforward artificial neural network 
(ANN) algorithm that relies on changing the weights of the 
morphometric variables after each process to determine the 
landform type based on the amount of error in the output 
compared to the expected result. 

II. MATERIAL AND METHODS 

A. Materials 
The DEM used for testing the proposed approach is a crop 

of the worldwide Copernicus DEM (GLO30), which was 
resampled to a 20 m resolution in EPSG: 3844 projection for the 
Eastern part of Romania (Fig. 1). The 20 m resolution is a natural 
choice since the pixel size in EPSG: 4326 projection is roughly 

a rectangle of 60 by 20 meters at the latitude and longitude of 
Romania. The choice of the study area is related to the low forest 
coverage. 

Since the elevation data comes from radar measurements, the 
landform shape in non-vegetated areas is well-constrained. The 
Copernicus DEM has low noise in flat areas and excellent 
precision, similar to LiDAR data (Fig. 2). At the 20 m spatial 
resolution, the channel and floodplain of rivers up to the third 
Strahler order are recognizable. 

B. Methods 
The segments used to delineate the landforms in the study 

area were generated by the watershed segmentation in SAGA 
GIS [1]. ViGRA implementation [2] in SAGA GIS was used on  

 
Figure 6. Location of study area within Romania. 

the slope morphometrical variable. This approach generates 
segments that adequately describe the landforms by producing 
sharp boundaries between hillslopes and channels/floodplains 
(Fig. 3). Segments cover well even the burial mounds and levees. 

For reference to estimate the accuracy of the approach, we 
have classified the segments into seven classes: channels, 
floodplains, gentle and steep hillslopes, plateaus, terraces, and 
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ridges (Fig. 4). We excluded the areas where there is forest cover 
or edited reservoir mask (non-colored areas in Fig. 4). 

 
Figure 7. Topographic cross-section through the Jijia floodplain (bottom) 

and the LiDAR (top left) and COPDEM (top right) data associated with it. 

 
Figure 8. Examples of watershed slope segmentation results overlayed on 

the shaded dem (a,c) or slope (b,d) for a floodplain sector (a,b) and a hillslope 
sector (c, d). 

 
Figure 4. Landform classification. 

For the segments, descriptive statistics (minimum, 
maximum, mean, range, variance, standard deviation) of various 
geomorphometric variables (elevation, index of convergence, 
openness, slope, full set of curvatures, flow length measures, 
TWI, texture, roughness, altitude relative to local channels) were 
generated to train a neural network, specifically Multilayer 
Perceptron (MLP). MLP is a deep feedforward neural 
network/multilayer perceptron method that uses the neuron 

model, of acyclic networks, in layers that use connected 
functions as vector nodes to fit linear functions for an overall 
non-linear classification or regression. R stat [3] and kerasR 
package [4,5] were used for the MLP implementation. 

In Figure 5, we show by color the landforms class in the 
statistic space defined by the mean values of segment slope and 
flow path length. It can be observed that floodplains and gentle 
and steep slopes have an excellent definition in the feature space, 
while the other landforms classes spread all over. This situation 
reflects the geomorphometric characteristics of the 
segmentation: channel segments also spread on the bottom of the 
hillslopes, while the plateaus and ridges spread on the hillslope’s 
upper part. 

In order to test the generalization power of the MLP model, 
we split the study area into two rectangular parts, the northern 
one for training and the southern one for testing. 

 
Figure 5. Landform distribution in the statistical space of mean flow path 

length and mean slope of the segments. 

III. RESULTS 
The results of the MLP fitting show that with at least 50 

epochs, the accuracy is relatively stable (Fig. 6). Similar results 
are obtained while tunning various parameters of the MLP. 

The confusion matrices and their statistics (Tables I-IV) 
show a good power of generalization, especially for floodplains, 
gentle and steep hillslopes, and plateaus and ridges. Channels 
and terraces are the landform types that show the lowest. 

The true positive of floodplain class segments (Fig. 7) covers 
the floodplains in the study area very well. Looking at the false 
positives and false negatives of the floodplain class (Fig. 7), 
which is the one that interests us, it can be observed that these 
segments either are scattered and can be easily filtered, or they 
are well-delineated from the floodplain and again can be easily 
identified and eventually filtered. 

 
Figure 9. Line plots of learning curves for the MLP model: cross-entropy 

loss (top), classification accuracy(bottom). 
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TABLE I.  CONFUSION MATRIX OF THE TRAINING 
AREA. 

Pr
ed

ic
te

d 
La

nd
fo

rm
s 

Reference Landforms 

 C F G S P T R 

C 2585 65 199 140 1a 4 13 

F 1238 10383 399 4 0 24 0 

G 83 10 3789 694 621 110 50 

S 82 0 37 11014 1 0 27 

P 3 0 561 12 3972 7 52 

T 25 0 100 2 19 1210 0 

R 1 0 311 142 676 9 957 

C – channels, F – floodplains, G – gentle hillslopes, S – steep hillslopes, P – plateaus, T – terraces, R - 
ridges 

TABLE II.  CONFUSION MATRIX FOR THE TESTING 
AREA. 

Pr
ed

ic
tio

n 

Landforms 

 C F G S P T R 

C 2656 96 212 48 17 27 31 

F 1643 9286 870 11 16 346 0 

G 138 9 4545 648 670 321 75 

S 134 0 58 8431 2 0 31 

P 27 0 537 5 5395 430 69 

T 3 1 198 0 204 812 1 

R 37 0 159 39 471 99 773 

C – channels, F – floodplains, G – gentle hillslopes, S – steep hillslopes, P – plateaus, T – 
terraces, R - ridges 

TABLE III.  STATISTICS OF CONFUSION MATRIX IN 
THE TRAINING AREA. 

Landforms 

 C F G S P T R 

Sensitivity 0.64 0.99 0.70 0.92 0.75 0.89 0.87 

Specificity 0.99 0.94 0.95 0.99 0.98 0.97 0.97 
Pos Pred 

Value 0.86 0.86 0.71 0.99 0.86 0.89 0.46 

Neg Pred 
Value 0.96 0.99 0.95 0.97 0.96 0.99 0.99 

Prevalence 0.10 0.26 0.14 0.30 0.13 0.03 0.03 
Detection 

Rate 0.07 0.26 0.1 0.28 0.1 0.03 0.02 

Detection 
Prevalence 0.08 0.30 0.14 0.28 0.11 0.03 0.05 

Balanced 
Accuracy 0.82 0.97 0.83 0.96 0.87 0.94 0.92 

C – channels, F – floodplains, G – gentle hillslopes, S – steep hillslopes, P – plateaus, T – 
terraces, R – ridges 

TABLE IV.  STATISTICS OF CONFUSION MATRIX IN 
THE TESTING AREA. 

Landforms 

 C F G S P T R 

Sensitivity 0.57 0.99 0.70 0.92 0.80 0.40 0.79 

Specificity 0.99 0.90 0.94 0.99 0.97 0.99 0.98 
Pos Pred 

Value 0.86 0.76 0.71 0.97 0.83 0.67 0.49 

Neg Pred 
Value 0.95 0.99 0.94 0.98 0.96 0.97 0.99 

Prevalence 0.12 0.24 0.17 0.23 0.17 0.05 0.02 
Detection 

Rate 
0.07

0 0.023 0.11 0.21 0.14 0.02 0.02 

Detection 
Prevalence 0.08 0.31 0.16 0.22 0.16 0.03 0.04 

Landforms 

 C F G S P T R 
Balanced 
Accuracy 0.78 0.95 0.82 0.96 0.88 0.70 0.88 

a. C – channels, F – floodplains, G – gentle hillslopes, S – steep hillslopes, P – plateaus, T – 
terraces, R – ridges 

IV. DISCUSSIONS 
The main objective of this research approach is detecting and 

delineating floodplain areas from medium-resolution DEMs on 
large areas. The proposed method is to use segments in order to 
have crisp borders for the delineation. The watershed 
segmentation of the slope delineates very well the border 
between the flat floodplain and the adjacent hillslopes and the 
levees inside the floodplain. A wide range of 
geomorphometrical variables are used as input for training an 
MLP model, and the results are good enough for this research 
stage. More variables could be tested in a tunning approach, and 
some class accuracy might be improved. Although terraces are 
well delineated from the floodplains, some terrace levels are still 
mapped as floodplains. These issues will be solved in the next 
steps of the analysis, during which the results will be used to 
derive the extension of the floodplain through merging and 
filtering. 

 
Figure 10. Predicted floodplain class according to the confusion matrix 

categories (False positives and false negatives). 

V. CONCLUSIONS 
The proposed approach of machine learning classification of 

landform segments proved helpful in detecting and delineating 
some landform types. Not all the landform types have the same 
accuracy, but using them allows the model to discriminate them 
geomorphometrically and better describe the other classes. This 
case is specific to floodplains and channels, which are very well-
identified and can be easily delineated by simply merging and 
filtering polygon islands or visual inspection. Also, the 
delineation accuracy between floodplain and hillslope segments 
is well-defined. 

Considering the Quaternary age of the floodplains and 
terraces, with most of the floodplains dating as Holocene, their 
geomorphometric delineation can be used as the base of their 
mapping. Geologic maps can be updated to incorporate this 
information to characterize Quaternary deposits better. As 
dating information improves and significantly better geological 
or geophysical data piles up, surface landform delineation will 
also be essential for the depth and volume prediction of these 
deposits. 
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Abstract— High Mountain Asia (HMA) has the most complex and 
rugged terrain in the world. However, the high-resolution terrain 
data in HMA is not easy to acquire. A modified super-resolution 
residual network in the study is trained, in order to develop super-
resolution DEMs in the HMA. Limited high resolution (HR) DEMs 
from other areas and freely available DEM data from the HMA is 
used to train the model. We constructed a new loss function which 
constrains the network learning and convergence by using the 
terrain parameters of slope and curvature. A comparative analysis 
between the proposed method and existing methods was conducted. 
The results demonstrate that MSRResNet can achieve highly 
accurate terrain data in the process of downscaling DEMs in HMA. 

I.  INTRODUCTION 
Terrain is a key component in the processes that occur at the 

landscape [1]. The High Mountain Asia (HMA) area should be 
given more attention, which is characterized by some of the most 
complex and highest terrain conditions in the world. Digital 
elevation models (DEMs) are widely used to represent terrain 
[2]. In HMA areas, the popular DEMs used is usually global free 
access elevation data, such as ASTER GDEM, SRTM [3-4], 
which are freely available with a resolution of 1 arc-second. 
However, higher resolution DEMs are still needed in this area, 
and many earth science studies require finer scale elevation data 
[5-6]. 

Deep learning (DL)-based methods have also been proposed 
for the development of super-resolution DEMs from existing 
elevation data. These studies transferred the frameworks of 
EDSR [7], SRGAN [8] and ESRGAN [9] from images to DEMs 
and then obtain the super-resolution DEMs. However, the DL 
methods mostly ignore terrain knowledge in the process of 
super- resolution. Terrain parameters are usually used to express 
terrain characteristics [10], and they can be divided into types, 
i.e., first- and second-order terrain parameters. Thus, the 
integration of DL and terrain parameters is promising for 
improving the accuracy of generated HR DEMs. 

In this paper, a modified super-resolution residual network 
(MSRResNet) is trained to generate super-resolution DEMs in 
HMA areas. It uses freely available DEMs from HMA and 
limited HR DEMs from other regions. A new loss function is 

constructed by considering the first-order and second-order 
terrain parameters in this network. We also compare the 
accuracies between the proposed method and existing super- 
resolution methods (i.e., the SRGAN deep learning method and 
the Bicubic spatial interpolation method) to assess the 
effectiveness of MSRResNet. 

II. MATERIALS AND METHODS  

A. Materials 
HMA, which is a high-altitude mountain region in Central 

Asia [11-12], is selected as the study area. The Hengduan 
Mountains, having treacherous topography conditions in the 
southeastern HMA, is the test area. The huge differences in 
elevation of the Hengduan Mountains between river valleys and 
ridges make it one of the most complex areas of the HMA. The 
test area and study area are shown in Fig. 1. The detailed 
information of the experimental data is shown in Table 1. The 
scale factor is 8 for the super-resolution experiment, which 
means the experimental results in resolution achieve an eight-
fold improvement. 

B. Methods 
The Flowchart of the DEM super-resolution framework in 

HMA is shown in Fig. 2. The loss function mainly consists of 
basic GAN loss, elevation loss, slope loss, curvature loss, and 
perceptual loss. Among them, elevation loss is the most common 
loss, and is pixel-based. Slope and curvature are commonly 
terrain parameters [13], and we transform the two parameters 
into MSRResNet losses. In addition, perceptual loss has the 
advantages in extracting high level detailed terrain knowledge. 
We added perceptual loss to help the network extract overall 
terrain knowledge. 

III. RESULTS  

A. Elevation 
As shown in Table 2, MSRResNet outperforms the other 

methods in MAE, RMSE, PSNR, and SSIM from 120 m to 15 
m. MSRResNet improves RMSE accuracy by 32.17% and 
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TABLE I.  BASIC INFORMATION OF EXPERIMENTAL DATA 

Data Location 
High-res DEM Low-res DEM 

Resolution Data Source Resolution Data Source 

Training Data 

25°- 52.5°N , 70° - 105°E 30 ma ASTER GDEM v3 240 m 90m SRTM DEM 

22°- 29°N , 106° - 117°E 30 m ASTER GDEM v3 240 m 90m SRTM DEM 

34°- 40°N , 106° - 111°E 5 m http://www.sxgis.cn/ 40 m 30m ASTER GDEM v3 

Testing Data 26°- 26.5°N , 98.9° - 99.5°E 15 m ZY-3 120 m 90m SRTM DEM 
 

 

Figure 1. The study area in the Hengduan Mountains in HMA. The small areas represented by A, B, and C are used for evaluation. 

 

Figure. 2. The flowchart for the DEM super resolution framework in HMA. 

MAE accuracy by 33.97% compared with Bicubic. And it 
improves RMSE accuracy by 39.15% and MAE accuracy by 
32.47% compared to SRGAN. Fig. 3 shows the DEMs produced 
by different methods. The results show that MSRResNet 
network achieves more detailed terrain features. And SRGAN 
and Bicubic show clear smoothing effects. 

B. Slope 
As shown in Fig. 4, the slope results by MSRResNet method 

appear close to those from the reference high resolution DEM. 
Many detailed terrain information can be found by our method. 
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C. Stream network 
We also compared the stream networks generated by several 

reconstructed DEMs and experimentally proved that the stream 
networks generated by MSRResNet is the closest to the stream 
networks generated by the reference DEM. 

TABLE II. ELEVATION ERROR EVALUATION WITH DIFFERENT 
METHODS. 

 

 Bicubic SRGAN MSRResNet 
MAE (m) 25.23 24.67 16.66 

RMSE (m) 30.96 34.51 21.00 
PSNR (dB) 31.48 30.52 34.27 

SSIM 0.9501 0.9511 0.9512 
Standard deviation (m) 30.96 32.45 20.69 

 

Figure 3. Comparison of reconstructed DEMs in areas A, B and C. 

Figure 4. Surface slope by different methods in areas A, B and C. 

IV. CONCLUSION 
In this paper, a modified super-resolution residual network 

(MSRResNet) is trained to generate super-resolution DEMs in 
HMA areas. It uses freely available DEMs from HMA and 
limited HR DEMs from other regions. A new loss function is 
constructed by considering the first-order and second-order 
terrain parameters in this network. We also compare the 
accuracies between the proposed method and existing super- 
resolution methods (i.e., the SRGAN deep learning method and 
the Bicubic spatial interpolation method) to assess the 
effectiveness of MSRResNet. We can obtain 15m DEMs based 
on the freely available 30m DEMs in HMA region. In the future, 
the proposed super-resolution method can be applied to obtain 

corresponding HR DEMs for other inaccessible regions to 
advance scientific researches. 
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Abstract— A wide range of global public topography datasets 
circulates to service for various purposes. However, the variety of 
versions, sources, and formats can confuse users and lead to 
decrease of usage. Users typically require a single terrain model 
that can be used to produce morphometric and hydrographic 
terrain variables across borders. An Ensemble Digital Terrain 
Model (EDTM) by deriving from global public elevation maps and 
national DTMs, serves as a simply updatable and inclusive map. 
To further increase the usability, the concept of Analysis-Ready 
Cloud Optimized (ACRO) on the basis of cloud optimized 
GeoTIFF (COG) is adopted. ACRO optimizes accessibility by its 
pyramid structure of overviews and provides data preprocessing 
and reformatting in an open source, well-documented and 
reproducible workflow. EDTM aims to reduce the complexity of 
global elevation datasets and make the data more usable. 

I.  INTRODUCTION 
In recent years a number of global public topography 

datasets at high spatial resolutions (30 m) have been released 
including GLO-30 and ALOS AW3D, and that is on top of the 
existing NASADEM, ASTER DEM, MERIT DEM and similar. 

Land-use planners, hydrologists, geomorphologists and a 
wide range of public and private sectors rely on a digital 
elevation map in their workflow. However, too many versions, 
sources, and formats can often confuse users and decrease the 
usability of each data. In addition, most DEMs produced from 
remote sensing observations are only surface models requiring 
removal of canopy and similar objects. Users typically require a 
single (most current, most accurate, most complete) terrain 
model that can then be used to produce morphometric and 
hydrographic terrain variables across borders [1-2]. 

Accessibility, huge data volume, non-standardized format, 
too many portals and platforms, and data discovery are five 
biggest challenges when it comes to open big earth data [3]. 
Cloud optimized GeoTIFF (COG) targets web-optimized access 
to raster data, having a pyramid structure of overviews based on 
tiles. This characteristic allows clients to retrieve the data by 
allocating to the suitable overview and loading sufficient tiles 
for visualization [4]. Upon COG, Analysis-Ready Cloud 
Optimized (ACRO) is the next generation of big earth data, 
providing data with preprocessing and reformatting, in order to 
lift the burden of environmental scientists. Furthermore, an open 
source, well- documented and reproducible workflow is required, 
so as users evaluate the suitability for their particular analytic 
task [5]. 

To help reduce the complexity of global elevation datasets 
and make the data more usable. We collect global public 
topography datasets (GLO-30, ALOS AW3D, and MERIT 
DEM) and nation DTMs (NDTMs), and create a multipurpose 
Ensemble DTM (EDTM) for the world. Furthermore, the 
ensemble map is simply updatable, inclusive, and in ACRO. 

II. ENSEMBLE TERRAIN MODEL IN 30 M (EDTM30)  

A. Concept 
Although terrain can be estimated using ICESat / GEDI 

points as reference training data, we adopt a more simple 
procedure for building a DTM that allows for faster updates and 
easy additions of new data: using lower 10% probability quantile. 
Advantage of having an inexpensive setup to update Ensemble 
DTM (EDTM30) is that we could possibly run nightly updates, 
as soon as countries or regions submit locally produced terrain 
models. 

Considering that terrain heights are at the lower part of the 
distribution, we simply derive a 10% lower quantile from multi 
source data (Figure 1). We assume that, because canopy is 
difficult to remove and still remains even in MERIT DEM and 
FABDEM [6], deriving 10% lower quantile can further help 
filter out potential canopy remains. The global public datasets 
and NDTMs are listed in Table I. 

B. Methodology 
To be computational efficiency, the process is run as the flow 

chart above, with tile by tile (1,000 x 1,000 pixels). In summary 
the process works as follows: firstly standard deviation (s.d.) is 
derived using the list of DEMs (new map). For GLO-30, ALOS, 
all pixels where s.d. values are greater than 6 m (60 dm) and/or 
where canopy height is greater than 2m are removed [7]. 
Subsequently, a lower 10% quantile is derived from GLO-30, 
ALOS AW3D, MERIT DEM, and NDTMs. Finally, the 
standard deviation among all maps is derived and used as the 
uncertainty map. 

The process of deriving the estimate is fully documented and 
automated in Python script 
(https://github.com/openlandmap/spatial-
layers/blob/main/EDTM/ensemble_dtm.ipynb ). The generation 
of an EDTM takes 5 hours running on a fully parallelized high 
performance computing center (HPC) with Common 
Component Architecture (CCA) 1050 threads under the 
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framework of Slurm. However, final mosaic of the world is a 
massive ~200GB dataset and takes about 3 days to compile a 
COG using GDAL (https://gdal.org). 

III. RESULT 
Two output layers are produced as ARCO GeoTIFF, which 

are (1) EDTM in meter, and (2) standard deviation, showing 
biggest discrepancies between ALOS AW3D, GLO-30, MERIT 
DEM, and national DTMs. 

To access this dataset seamlessly, the global mosaic to COG 
files are uploaded to S3 repository. Data are hosted accordingly: 

(1) EDTM in meter, (https://s3.eu-central-
1.wasabisys.com/openlandmap/dtm/dtm.bareearth_ensemble_p
10_30m_s_2018_go_epsg4326_v202 30221.tif), and (2) 
standard deviation (https://s3.eu-central-
1.wasabisys.com/openlandmap/dtm/dtm.bareearth_ensemble_s
td_30m_s_2018_go_epsg4326_v2023 0221.tif). 

A demonstration of the maps used and the results obtained 
(EDTM) is shown in Figure 2. Masked out areas are mainly hills 
and mountains, and the uncertainty in these areas is also higher. 
It indicates that the difference in elevation at mountainous 
regions is significant among DEMs. Figure 3 illustrates the 
overview of global EDTM. 

 
Figure 1. Workflow of Ensemble Digital Terrain Model 

 
Figure 2. Input maps and EDTM, and the standard deviation (uncertainty) map 

around Iași 

 
Figure 3. Global EDTM in an overview 

 

TABLE I.  LIST OF PUBLIC GLOBAL, REGIONAL, AND NATIONAL MAPS 
USED FOR MODELING EDTM 

Name of map Type* Coverage DOI 
GLO-30 DSM Globe 

(without 
Azerbaijan) 

https://doi.org/10.5270/E
SA-c5d3d65  

ALOS AW3D DSM Globe https://doi.org/10.5194/is
prsannals-II-4-71-2014  

MERIT DEM DTM Globe https://doi.org/10.1002/2
017GL072874  

Dtm_eumap 
(EcoDataCube) 

DTM Europe https://doi.org/10.5281/z
enodo.4724549  

Digital Elevation 
Model (DEM) of 
Australia, Lidar 

DTM Coastal and 
Urban area in 
Australia 

https://doi.org/10.26186/
89644  

Digital Elevation 
Model (DEM) of 
USA, Lidar 

DTM United States https://doi.org/10.3133/fs
20193032  

*DSM – Digital Surface Model; DTM – Digital Terrain Model 
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Abstract— Terrain models are widely used to depict the shape of 
the Earth's surface. With the development of photogrammetric 
methods, point cloud data have become one of the most popular 
data sources for terrain modelling. However, the obtained point 
clouds are of high density, which often increases redundancy 
rather than improving accuracy. Therefore, point cloud 
simplification should be a core component of terrain modelling. 
This paper proposes a point cloud simplification method by 
integrating terrain knowledge into terrain modelling (TKPCS). 
The method contains two steps: (1) terrain knowledge intuition 
and construction and (2) point cloud simplification using this 
terrain knowledge for terrain modelling. The proposed approach 
is benchmarked against improved versions of existing methods to 
validate its capability and accuracy in digital elevation model 
construction and terrain derivative extraction. The results show 
that the simplified points of the TKPCS method can generate finer 
resolution terrain models with higher accuracy and greater 
information entropy. The good performance of the TKPCS 
method is also stable at different scales. This work endeavors to 
transform perceptive terrain knowledge into a process of point 
cloud simplification and can benefit future research related to 
terrain modelling. 

I. INTRODUCTION  
Earth’s surface consists of multiple landforms and a wide 

range of topographic characteristics [1]. Terrain modelling and 
subsequent analysis can help recognize and explore the character 
and formation of the Earth's surface [2]. At present, point cloud 
data are widely used for terrain modelling [3]. Developments in 
measurement technology have led to easier acquisition of high-
density point cloud data. However, such point clouds introduce 
new problems concerning postprocessing redundancy for terrain 
modelling and analysis. Furthermore, terrain data should match 
the scale of the process mechanism and analysis purpose of 
geoscience research. Terrain data-related studies do not need to 
be carried out at decimetre- and millimetre-scale resolutions [4]. 
For example, accurate slope calculation and water flow 
simulation can be achieved at the metre level. Therefore, it is 
necessary to simplify point clouds.  

Many studies have focused on point cloud simplification and 
the methods can be divided into mesh-based and point cloud-
based. Mesh-based simplification methods initially build regular 
meshes based on point clouds and then simplify them using a 
given rule [5-6] However, mesh-based methods are limited by 

the large computational cost of mesh generation. Point cloud-
based methods [7-9], for example cluster-based simplification, 
directly simplify point clouds without constructing polygonal 
meshes. The point clouds are first clustered into local point sets 
which are then simplified based on user defined rules. However, 
due to the limitations of clustering algorithms, the simplified 
result points are not suitable for terrain modelling. 

Whether the mesh-based or point cloud-based method is 
used, the point information should always be considered during 
the simplification process. Normally, the geometric curvature, 
curvature combined with entropy, and the deviation of the 
normal vectors were commonly used as indicators to describe 
the importance of points [7-9]. However, although these 
indicators can show the significance of points on a local surface 
from a geometric view, a terrain surface consists of complex 
topographic characteristics, and traditional indicators are 
insufficient for the retention of terrain feature points after point 
cloud simplification.  

Previous approaches have produced good simplifications of 
the point clouds of regular objects. However, a terrain surface is 
characterized by abrupt change, gradual change, and constant 
morphology [10] and is so complex that it is beyond the 
application of existing methods. At present, high-density terrain 
point cloud data simplification methods mainly include 
traditional curvature, random, and uniform methods. However, 
complex terrain features such as slope and land surface 
curvatures are not fully considered in existing simplification 
methods. Furthermore, terrain information consists of global 
structural and local detailed features [11], and both should be 
considered in simplifying terrain point clouds.  

The global and local characteristics can be summarized as 
the understanding and intuition of terrain knowledge, which 
represents a combination of the perceptive descriptions of 
topographic characteristics across different environments [1]. It 
consists of global and local terrain knowledge. In this paper, we 
propose a point cloud simplification method by integrating 
terrain knowledge into terrain modelling. This method first 
intuits and constructs the terrain knowledge of the point cloud, 
and then, based on the integrated terrain knowledge, we develop 
a simplification method to retain terrain feature points.  

https://doi.org/10.5281/zenodo.7805651
mailto:chenjun@nnu.edu.cn
mailto:xiongliyang@njnu.edu.cn
mailto:181302065@njnu.edu.cn
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II. METHODS  

A. Terrain knowledge institution and construction 
In this paper, global terrain knowledge was used as the 

principle to extract global feature points, which can control the 
structure of the terrain, and local terrain knowledge was used as 
a basis to extract local feature points which can help to enrich 
the details of a terrain surface. Fig. 1(c) shows the simplified 
points, which consist of the global and local feature points. 

1) Global terrain knowledge 

The global structure of a terrain surface is constructed using 
terrain feature points and lines [1]. We recognized the global 
terrain feature information as global terrain knowledge to 
preserve global feature points, which can prevent the loss of 
global terrain feature points during local simplification process. 
Normally, the feature points and lines of the terrain surface 
mentioned above are mainly distributed at the locations of abrupt 
changes in terrain, which can be indicated by the profile 
curvature that is the curvature along the direction of the 
maximum slope gradient, and is the rate of change of the terrain 
slope. In this study, the profile curvature was used to construct 
global terrain knowledge to efficiently preserve global feature 
points. 

Specifically, the profile curvature values in ascending order 
were divided into two categories using the Jenks natural breaks 
classification method. The points with higher curvature values 
were selected to form a candidate point set of global feature 
points. Then global terrain feature points can be obtained by 
uniformly sampling the global candidate point set with a specific 
reduction ratio (i.e., point cloud reduction ratio). The extracted 
global terrain feature points can control the basic structure of the 
terrain surface (Fig. 1(a)). 

2) Local terrain knowledge 

Local terrain points can enrich terrain details, ensure the 
relative uniformity of point distribution, and improve the 
accuracy of terrain modelling. Terrain derivatives can express 
the morphological features of landforms. In previous studies, 
terrain derivatives, such as slope, were chosen to optimize 
terrain features during DEM processing because they are critical 
to many analyses [11]. Furthermore, the combination of multiple 
terrain derivatives has been proved to be more suitable to 
describe the complexity and roughness of a terrain surface [12]. 
Thus, in this study, we chose multiple terrain derivatives, 
including the elevation standard deviation, total accumulation 
curvature, and slope, to construct local terrain knowledge to 
control the simplification of the point cloud. These terrain 
derivatives consider both the terrain complexity and the material 
flow on the surface and ensure that the extracted points are 
representative of the local terrain surface (Fig. 1(b)).  

The local terrain knowledge was constructed using the 
weighted summation of the terrain derivatives. Since the 
distribution of landforms often varies considerably at high, 
medium, and low altitudes (Fig. 1(d)), for weight setting, we 
divided the test area into three subregions to construct local 
terrain knowledge, respectively, because we believe that the 
weights should be different for subregions in different landforms. 
Specifically, the Jenks natural breaks method, which uses the 
elevation data of the test area as input, was used to divide the test 
area into three subregions of high, medium, and low altitudes to 
construct local terrain knowledge. Then, the weights of the 
terrain derivatives were determined using the criteria importance 

through the intercriteria correlation method (CRITIC) [13] in 
different subregions.  

The terrain derivatives mentioned above were calculated on 
a local quadratic function fitted using the local point cloud by 
the moving least squares algorithm [14]. In addition, we used a 
multiscale method that computes robust geometric features on 
point clouds to retrieve the optimal neighbourhood size for each 
point [15] rather than commonly used fixed search radius or 
number of points. 

 

Figure 1.  (a) Global feature points. (b) Local feature points. (c) The 
combination of the global and local feature points. (d) A, B, and C are 

different landforms in high, middle, and low altitude regions. (e) Diagram of 
the roulette wheel selection method. (f), (g), and (h) are the raw point clouds, 

DEM, and rendering map of the test area, respectively.  

B. Integrating terrain knowledge into point cloud 
simplification 

The TKPCS method flowchart is shown in Fig. 2. The global 
terrain feature points were first obtained by uniformly sampling 
the global candidate point set. Then, the retained global terrain 
feature points were integrated into the local grid simplification 
process. The local terrain feature points were extracted using the 
local terrain knowledge within the grid, which can be divided 
into two steps. The first step is to grid the point cloud and 
determine the number of simplified points in each grid based on 
the number of points and their local terrain knowledge values 
within the grid relative to all grids. The second step is a grid-by-
grid local simplification process controlled by the local terrain 
knowledge. The test area was first gridded into subregions. In 
each subregion, points were simplified according to the strength 
of the local terrain knowledge. The principle is that the greater 
the local terrain knowledge value of a point is, the greater the 
probability of retention, and the smaller the probability of being 
simplified. This is the same as drawing a single sample from a 
multinomial distribution, which was implemented using the 
roulette wheel selection method [16]. A proportion of the wheel 
is assigned to each of the possible selections based on the local 
terrain knowledge of points within the subregions. Then a 
random selection is made similar to how the roulette wheel is 
rotated. 
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Figure 2.  TKPCS algorithm workflow. 

C. Evaluation methods and test area 
We compared the TKPCS method with the revised random 

and curvature methods that are also limited by grids. Metrics, 
including the surface area loss of the modelled terrain based on 
triangular irregular networks (TINs), the root mean square error 
(RMSE) and mean absolute error (MAE) of the grid based 
DEMs (Grid-DEMs), and the average slope information entropy 
of the simplified points, were used for comparing the simplified 
results. The reference data of the metrics is generated from raw 
point clouds. Each validation method was carried out at 
reduction ratios of 90%, 95% and 99% and grid sizes of 1 to 5 
m to verify the accuracy and stability of our method. The test 
area is sampled from a watershed in the Loess Plateau. Point 
clouds in the test area was generated using photogrammetric 
methods with approximately 30 points per square metre (Fig. 1(f, 
g, h)). 

III. RESULTS 

A. Simplified point clouds using different methods 
In contrast to the simplified points of the revised curvature 

and random methods, the distribution of the TKPCS method's 
simplified points exhibits two key characteristics (Fig. 4(a)). 
First, regions with complex terrain are where the TKPCS 
method's simplified points are most found. Second, the TKPCS 
method retains a rather uniform distribution of points. 
Furthermore, our method can retain more terrain feature points 
from the parts of the test area (Fig. 4(b, c)). In addition, the 
average slope entropy of the TKPCS method's simplified points 
is higher than that of the other methods (Fig. 5(a)). This implies 
a higher slope dispersion of the simplified points of the TKPCS 
method, indicating that the simplified points of the TKPCS 
method can retain more terrain information. 

B. Terrain modelling with the simplified point clouds 
From the perspective of generated Grid-DEMs, first, the 

TKPCS method achieves high frequencies in low difference 
(0~0.2) with the reference data Fig. 3. Second, the TKPCS 
method generally achieves smaller MAE values (Fig. 5(b)). In 
terms of generated TINs, (Fig. 5(c)) shows that the surface area 
loss of the TKPCS method is smaller overall than that of the 
other methods. This means that terrain surfaces (e.g., TINs) 
constructed using the TKPCS method's simplified points are 
closer to the original terrain surfaces than those of the other 
methods. The above validation shows that the TKPCS method 
outperforms the other methods in terrain modelling. 

 
Figure 3.  The difference frequency of Grid-DEMSs at 99% reduction ratio. 

 
Figure 4.  Simplified points and their partial enlargements. 

 
Figure 5.  (a), (b), and(c) are average slope entropy, MAE, and surface area 

loss, respectively, with multiple reduction ratios and grid sizes. 

IV. CONCLUSIONS 
The comparisons demonstrate the TKPCS method's superior 

performance in terrain modelling. Furthermore, the simplified 
points of the TKPCS method are mostly distributed in terrain 
features and retain more terrain information. 
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Abstract— Currently there are various global digital elevation 
models (GDEM) and it would be necessary to have measures that 
help decide which one to use according to the derived product that 
we need. The DEMIX Project addresses this problem. In this 
communication we show an automatic measure that assesses the 
planimetric quality of a DEM product (DEM) and that allows 
ordering from highest to lowest, according to planimetric quality, 
any DEM and particularly a set of GDEMs. The planimetric 
quality of a DEM is assessed by comparing its contours with their 
homologous ones belonging to a reference DEM (DEMref) of 
greater accuracy. The area enclosed by homologous contours is an 
indicator of DEM's accuracy: the smaller the area enclosed by 
homologous contours, the greater horizontal accuracy. In this 
study, the area divided by the average length of the contours is 
used to estimate the DEM horizontal accuracy compared with a 
DEMref. One of the great advantages of this method is that it is 
completely automatic (we do not need to identify the homologous 
curves). Although the method can be used to compare any DEM, 
in this study we have used 2 GDEMs (ASTER and NASADEM) as 
DEM which have 30 m of spatial resolution and the DEMref is the 
Spanish MDT05 (5 m of spatial resolution) generated by the 
Spanish Instituto Geográfico Nacional (IGN). 

I.  INTRODUCTION 
Digital elevation models (DEM) are used in many branches 

of knowledge, such as Civil Engineering, Environment, Natural 
Risk Management, Climate Change, etc. Many products are 
derived from them, such as slope maps, orientations, basins and 
hydrographic networks, optimal locations for mobile phone 
antennas, etc. Due to the large number of DEMs applications, 
numerous studies of their quality have also been carried out, as 
shown in [1-3]. In most cases, the DEM vertical accuracy is 
studied [2,4] and planimetric accuracy is left aside as it is more 
difficult to compute because the difficulty of identifying 
homologous points between the DEM and the DEMref or 
reference control elements [4]. In the DEM vertical accuracy 
studies, the height values of a sample of points obtained from a 
DEMref or directly in the field using, for example, GNSS, are 
compared with their homologous ones in the DEM whose 
accuracy is to be computed; these studies often use classical 
statistics (RMSE, μ, σ, MAE, NMAD, etc.) [5-6]. The 
mentioned above homologous points are selected from the DEM 
at the same horizontal coordinates that the ground truth points 
had, but how do we know that these homologous points are 
really the same in both datasets? Proceeding in this way, we are 

considering that DEM has no planimetric error with respect to 
the ground truth. There are so few studies of planimetric 
accuracy in DEMs because of the difficulty of identifying 
homologous points in DEM and DEMref. Some early proposals 
for planimetric accuracy evaluation measures appear in [7] but 
do not allow for automation of the process, which makes 
implementation difficult. And more recently, measures that 
evaluate the planimetric accuracy of a DEM have been proposed 
[8-11]; among them, perhaps the best is the one based on the area 
enclosed by homologous contours that intersect, considering as 
homologous those contours that represent the same altitude in 
the DEM and the DEMref respectively [8-9]; this method solves 
the problem of identifying homologous elements in both the 
DEMref and DEM, since if no altitudinal bias exists, the 
homologous contours represent the same planimetric space of 
the terrain, and the non- coincident part expresses the 
planimetric discrepancy between the DEM and the DEMref. 

In the present communication we develop an application 
example of the horizontal accuracy method based on contours 
[9], which could be used to rank GDEMs produced by different 
sources from best to worst. 

II. MATERIAL AND METHODOLOGY 

A. Material 
In order to illustrate the method, 2 DEM of 10 km x 10 km 

located in Sierra Nevada, Granada, (Spain) have been used. The 
source GDEMs are ASTER V003 and NASADEM. Both are 
open data that we have downloaded from the NASA website 
https://search.earthdata.nasa.gov/search. ASTER and 
NASADEM have a cell size of 1 arcsecond which is roughly 
equivalent to 30 m. The DEMref selected was the MDT05 
produced by the IGN of Spain, whose cell size is 5 m. 

The coordinate reference system (CRS) for ASTER and 
NASADEM was WGS84 while that of MDT05 was ETRS89 
UTM zone 30N. To give the DEM samples (MDT05, 
NASADEM and ASTER) the same limits and the same cell size, 
an alignment was carried out, taking MDT05 as a reference and 
resampling to the nearest neighbor. Finally, the 3 samples were 
stored in the CRS ETRS89 UTM zone 30N and their respective 
contours were derived. The contour step had a value of 125 m, 
beginning the first contour at an altitude of 950 m and ending 
the last contour at 2825 m height. 

mailto:jreinoso@ugr.es
mailto:fjariza@ujaen.es
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Figure 1: GDEM samples geolocation at Granada (Southern Spain) 

B. Methodology 
The DEM horizontal accuracy with respect to DEMref is 

estimated as a function of the area enclosed by homologous 
contour lines. In Fig.2 we can see 2 types of homologous 
contours: suppose that the contours labeled as A belong to 
DEMref and those labeled as B belong to DEM; the contours are 
not coincident because DEM lacks accuracy with respect to 
DEMref and the inaccuracy magnitude is intuited by the amount 
of enclosed surface (grey color) between homologous contours. 

The inaccuracy magnitude of the (Hacc) for a single contour 
in DEM could be estimated by the equation (1) where LA and 
LB are the lengths of the contours in DEM and DEMref 
respectively and Area is the area enclosed by both contours. 

    Eq. 1 

An alternative could be to use the LB as denominator, and it 
would deserve a comparison with our proposal. 

In a DEMref, at a particular altitude (hi) there will be a 
number of contours m whose total length will be refLTi; in a 
DEM for the same hi, there will be a number of curves n whose 
total length will be proLTi, and the total area enclosed by the 
homologous contours of DEMref and DEM at altitude hi will be 
AreaTi. If we only consider the altitude hi to compute Hacci, 
then Hacci = AreaTi/(refLTi+ proLTi)/2. Since the number of 
altitudes for which the contour are calculated is variable i=1, 
2,…,k, the estimate of the total horizontal accuracy (HTacc) of 
DEM with respect to DEMref will be as shown in equation (2):  

    Eq. 2 

 

Figure 2: Area between overlapping contours (A and B) 

It is difficult to automate the HTacc computation because the 
correspondence between homologous contours is not a bijective 
map; a priori the correspondence could have any setting, e.g. 1- 

>1, 0->1, 1->n, n->1 and in general manner m->n. To 
understand all the cases that could happen you can consult [9]. 

The greatest difficulty to automate the process is to prove the 
following theorem: 

The number of possible different Regions in a DEM 
(REGk Xs) is exactly 2 and they are complementary. 

The regions to which the theorem refers are those that appear 
in gray in the images f and i respectively of Fig. 3. The correct 
region will be the one with the smallest surface (image f in Fig.3). 
The images a and b in Fig. 3 represent DEMref and DEM 
respectively, assuming that all contour have the same height. As 
shown in Fig. 2, the correspondence between homologous 
contours is not bijective. The images f and i are the 2 
complementary regions mentioned in the theorem; f is derived 
applying the mathematical operation symmetric difference 
between the d and e images. Similarly is derived this image. 

  

Figure 3: Theorem illustration. Images a and b show homologous 
contours with no bijective correspondence, and images f an i show the 

only two possible regions after applying method explained in [9] 

III. RESULTS AND DISCUSSION 
The algorithm presented in [9] has been applied using 

MDT05 as a reference and the graphic result is shown in Fig. 4. 
The images that allow HTacc to be computed are those labeled 
with NASA vs MDT05 and ASTER vs MDT05. Fig. 4 includes 
an additional result (ASTER vs NASADEM) that does not 
measure the horizontal accuracy of the DEM but shows the 
horizontal discrepancy between ASTER and NASADEM 
comparing their homologous contours. 

In order to have a better understanding of how the algorithm 
works, in Fig. 4 two examples of each of the three results have 
been enlarged. These examples have been framed in red and 
green, giving rise to the left column (red) and the left column 
(green) respectively. In both examples the area between contour 
lines of ASTER vs MDT05 is greater than the area NASA vs 
MDT05, so it is expected that the best value of HTacc belongs 
to NASADEM. 

The HTacc numerical values for ASTER and NASADEM 
are shown in Table 1, although before performing the HTacc 
final computation, the horizontal accuracy (Hacci) for each 
curve elevation (hi) has been computed: each row corresponds 
to the values of contours mean length ((refLTi+ proLTi)/2), area 
between homologous contours (ArearfTi) and DEM horizontal 
accuracy o if only hi (Hacci) is considered. It is observed that for 
all the hi values the Hacci measure is very similar except for the 
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value hi=950 m where the horizontal accuracy values are much 
greater than in the rest. This is because there is a relationship 
between homologous contours of 1->0, i.e., both in ASTER and 
in NASADEM there is a contour that does not appear in MDT05, 
which produces a very large area (marked with a blue ellipse in 
Fig. 4). 

In this example where we compute the HTacc for ASTER 
and NASADEM, the best global accuracy is obtained by 
NASADEM, which has HTacc =10.7 m compared to ASTER's 
HTacc=14.0 m, which implies that NASADEM improves 
ASTER's horizontal accuracy by 23%. 

IV. CONCLUSIONS 
In this communication we have presented a method that 

allows ranking a series of GDEMs produced by different sources; 
the method is based on a measure that can estimate the horizontal 
accuracy (HTacc). To perform the method requires a DEMref 
that will be the ground truth to compare the DEM (GDEMs) with. 
Furthermore, HTacc has the advantage that it can be automated 
according to the algorithm [9]. We consider that this measure is 
of interest to the DEMIX project, which aims to compare 
different GDEMs in order to rank them. A remarkable property 
from the method is that it can identify homologous elements in 
DEMs (contours). This ability is hard to find in other methods, 
even those based on manual processes since there is usually no 
certainty about which pair of points are homologous in DEMref 
and DEM. 

Finally, the graphic representation capabilities of one of the 
measurement components (area between homologous contours) 
demonstrates in which areas the greatest DEM inaccuracies 
happen (Fig. 4). 

TABLE I.  HORIZONTAL ACCURACY ESTIMATION FOR ASTER AND 
NASADEM 

 ASTER vs MDT05 NASA vs MDT05 

hi 
Contour 
height 

(m) 

(refLTi+ 
proLTi)/2 

(m) 

AreaTi 
(m2) 

Hacci 
(m) 

(refLTi+ 
proLTi)/2 

(m) 

AreaTi 
(m2) 

Hacci 
(m) 

950 2371,0 276131,3 116,5 1902,2 268245,4 141,0 

1075 20908,0 259411,0 12,4 20054,9 227050,7 11,3 

1200 31726,1 405635,7 12,8 31429,9 336515,7 10,7 

1325 37552,4 465815,1 12,4 36922,7 414114,5 11,2 

1450 51316,5 746549,1 14,5 49595,4 554530,1 11,2 

1575 46881,6 653031,8 13,9 46079,8 443547,1 9,6 

1700 47503,2 675658,8 14,2 46984,4 516096,0 11,0 

1825 41267,9 543688,1 13,2 40544,6 389059,7 9,6 

1950 32380,7 409800,2 12,7 32211,5 286557,0 8,9 

2075 27934,4 358605,1 12,8 27393,5 241606,8 8,8 

2200 24431,5 319213,5 13,1 24350,4 223654,3 9,2 

2325 19709,6 253086,0 12,8 18886,1 170584,4 9,0 

2450 7929,7 100859,4 12,7 7779,4 55654,7 7,2 

2575 3619,2 54334,8 15,0 3570,4 29773,6 8,3 

2700 2059,8 30973,8 15,0 2023,6 19112,4 9,4 

2825 633,4 8220,8 13,0 655,3 5805,7 8,9 

 
H

Tacc 

1
4,0 

H
Tacc 

1
0,7 

 
Figure 4: Area inside homologous contours after comparing DEMref and DEM 
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Abstract—An adequate choice of independent variables poses a 
basal step to create successful model of Land-Use and Land-Cover 
Change (LUCC). Spatial predictors derived from digital elevation 
model (DEM) are a big group of determinants that are relatively 
easy to obtain. However, the review of more than one hundred 
articles showed that only basic geomorphometric variables: 
elevation, slope, partly aspect and characteristics of solar radiation 
are mostly used. In this study, 21 geomorphometric predictors are 
tested in LUCC models of 5 distinct changes in Slovakia: 
urbanisation, intensification, extensification, afforestation, 
deforestation. The changes were obtained from CORINE Land 
Cover (CLC) database in the period 1990 – 2018. Logistic 
regression was used to quantify the association of the predictors 
and LUCC. In the first step, the relationship of one variable to 
each change was investigated in univariate logistic regression 
models. Based on univariate models, insignificant predictors were 
removed from further analysis. The most important 
geomorphometric predictors identified by multiple-variable 
logistic regression models and hierarchical partitioning were 
elevation, slope, Casorati curvature, duration of solar radiation, 
relief amplitude, topographic wetness index, terrain ruggedness 
index, and relief brake force. All have a good energetic 
interpretation that could be important in land cover formation. 

I. INTRODUCTION 
Studies investigating Land-Use and Land-Cover Change 

(LUCC) are a common part of geo-science experiments and 
applications. Typical mapping of land cover classes and 
detecting changes over the years has gradually shifted to spatial 
modeling of it [1]. In general, the modeling of LUCC deals with 
very traditional geographical issue: the relationship between 
various geographical factors – spatial predictors and LUCC [2,3]. 
However, some data (predictors) are difficult to obtain (for 
example individual motivation of landowners [4]), another data 
have inappropriate spatial resolution. The modeling is therefore 
generally limited by availability of the input data [5]. In contrast 
of it, geomorphometric characteristics derived from digital 
elevation model (DEM) are a group of spatial predictors that are 
easily obtainable, thanks to abundance of various, even global 
DEMs. However, the review of more than one hundred articles 
showed that most often only basic geomorphometric variables 
are used: elevation [6,7], slope [8], partly aspect [7,9], and 
characteristics of solar radiation [6,7]. Resulting from the 
classification of the fundamental geomorphometric 
characteristics [10] we assume that there are other 
geomorphometric characteristics which also could be relevant in 
LUCC modeling. Moreover, the theory of physical 
geomorphometry [11] supports better interpretation of these 

relationships considering the effect of gravitational force on the 
land surface processes. 

Our aims were to: (1) review research articles and find the 
most used geomorphometric characteristics used in LUCC 
models, (2) systematically create the (exhaustive) list of 
potential geomorphometric predictors, (3) test several 
geomorphometric predictors in modeling of changes in the area 
of Slovakia from 1990 – 2018 using logistic regression, (4) find 
the most important individual variables and quantify their 
contribution in multiple-variable model with other non-terrain 
variables which play relevant role in LUCC modeling. 

II. MATERIAL AND METHODS 

A. Literature review 
We searched for LUCC modeling studies in scientific 

databases (WoS, Scopus, etc.) using keywords such as LUCC 
modeling, geomorphometric characteristics, topographic 
variables and we tried to find this information in the articles: 
DEM product and its spatial resolution, geomorphometric 
variables derived from it, formulas and tools used in the 
calculations. Finally, we gathered one hundred LUCC and we 
made the list of the most frequent geomorphometric predictors 
used in LUCC modeling (Tab. 1). 

TABLE I.  THE MOST USED GEOMORPHOMETRIC PREDICTORS IN LUCC 
MODELING 

Variable Count 

Slope 92 

Elevation 83 

Aspect 36 

Solar radiation 20 

Topographic Wetness Index 9 

Landforms 8 

Curvatures 5 

Topographic Position Index 5 

Relief amplitude 4 

Specific Catchment Area 4 

Terrain Ruggedness Index 2 

Drainage density 1 
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Variable Count 

Stream Power Index 1 

 

B. LUCC data 
Land cover data were obtained from the official CLC dataset 

for the area of Slovakia. We used data from years 1990, 2000, 
2006, 2012, 2018. Changes between 1990 and 2018 were 
identified by merging the partial layers of change. The changes 
were categorised by a diagram of land cover flows into six 
categories [12]: urbanisation, agricultural intensification, 
agricultural extensification, afforestation, deforestation, and 
water bodies construction. However, water bodies construction 
was excluded from the next statistical analysis because of the 
small area of change. 

C. Geomorphometric predictors 
Based on our prior knowledge and experience with 

geomorphometric characteristics, we derived 21 predictors from 
national DEM (DMR 3.5) with spatial resolution of 10m (Tab. 
2). Firstly, we used fundamental local point-based variables, 
elevation and its changes (first and second derivatives) in the 
direction of the gravitational field introduced by [13,14]. In 
addition to basic trio of gravity-specific curvatures [15], field-
invariant curvatures [16] (mean, Gaussian, Casorati) were also 
added. Local area-based variables were represented by relief 
(amplitude of topographic wave) ‘ra’, drainage density ‘dd’ 
representing length of the wave, and ratio of the wave amplitude 
and length determining relief brake force ‘rbf’ [17,18]. Secondly, 
we calculated characteristics of solar radiation. Thirdly, we 
added some variables, mostly various terrain indices, which are 
used in different geo-applications such as hydrology, 
geomorphology, etc. 

TABLE II.  LIST OF TESTED GEOMORPHOMETRIC PREDICTORS 

Abbrev. Variable Notes on tools and sources 

elev Elevation above sea level 10m DEM 

slop_deg Slope [°, %, rad, sine, tan] Slope tool ArcGIS 
Pro 

asp 
Aspect 
Sine of aspect 
Cosine of aspect 

Aspect tool ArcGIS 
Pro 

prof_curv Normal slope line curvature 

Surface Parameters 
tool ArcGIS Pro 

 
Enhanced GIS tools 

proposed by [15] 

tang_curv Normal contour curvature 

torsion_curv Contour geodesic torsion 

mean_curv Mean curvature 

caso_curv Casorati curvature 

gauss_curv Gaussian curvature 

ra Relief amplitude circle, r = 1500m 

dd Drainage density circle, r = 1500m 

solar_glob Global radiation 
Area Solar Radiation 
tool ArcGIS Pro solar_dir Direct radiation 

solar_dur Duration of direct radiation 

a Specific catchment area Raster Calculator 
[19] 

twi Topographic Wetness Index Raster Calculator 
[20] 

tpi Topographic Position Index 
Land Facet Corridor 

tools  – Extension for 
ArcGIS [21] 

Abbrev. Variable Notes on tools and sources 

tri Terrain Ruggedness Index TRI tool SAGA GIS 
[22] 

spi Stream Power Index SPI tool SAGA GIS 
[23] 

mrn Melton Ruggedness Number MRN tool SAGA 
GIS [24,25] 

rbf Relief Brake Force Raster Calculator 
[17,18] 

a. Underlined variables recorded the highest overall AUC in univariate regression models. 

D. Statistical analysis 
We used a regular sampling grid in square net with step of 

500m. Values of changes and spatial predictors were assigned to 
each point of the grid. Univariate logistic regression models 
revealed eight geomorphometric variables, which are potentially 
significant for land cover changes in Slovakia (underlined 
variables in Tab. 2). AUC of ROC curve was used as the 
indicator of the model’s explanatory power. These eight 
predictors were subsequently added to the multiple-variable 
model, together with other spatial predictors which play 
important role in LUCC modeling: mean annual temperature 
interpolated to 100m grid (temp) from Climate Atlas of Slovakia 
[26], Euclidean distance to the nearest settlement (dist), and 
population density (pop_dens) at municipal level [27]. We 
selected multiple-variable models for the next analyses using the 
stepwise regression procedure. In each step, the variable with the 
lowest significance (p < 0.05) was excluded from the next step 
of the procedure until each variable was significant. Lastly, we 
used hierarchical partitioning as a method for quantifying an 
individual contribution of the predictors to the overall variance 
explained by the model [28]. 

III. RESULTS AND DISCUSSION 
Resulting from univariate models, the highest AUC was 

reached by: ‘tri’, ‘ra’, ‘rbf’, slope, elevation, duration of solar 
radiation, Casorati curvature, and ‘twi’. These variables were 
used in multiple-variable logistic regression models (Fig. 1). 

The explanatory power (AUC) of the models was relatively 
high for each land cover change, except deforestation: 
urbanisation 0.81, intensification 0.77, extensification 0.74, 
afforestation 0.80, and deforestation 0.66. However, the final 
pool of significant predictors was different for different land 
cover changes. Individual contribution of variables to the model 
explanatory power (sum of individual contributions = 100%) 
was calculated only for the strongest predictors after backward 
stepwise regression (Fig. 1). 

Relative high importance of Casorati curvature 
(intensification – 17.26%, urbanisation – 13.79%, afforestation 
– 9.27%) is the most surprising discovery. This curvature is 
generally used only occasionally, and our review indicates that 
has never been tested as a predictor in LUCC modeling. It is a 
measure of general surface non-linearity [15], expressing 
integral potential energy of surface curvature related to general 
landforms instability [11]. Investigation of possible relationship 
between physical specificity of Casorati curvature and its 
fruitfulness in LUCC modeling is a challenge for the future work. 

Another non-trivial result is relative importance of two 
characteristics describing undulation of topography. ‘Ra’ (wave 
amplitude) and ‘rbf’ (ratio of wave amplitude and length) 
contributed to explain the model of afforestation (ra – 13.55%, 
rbf – 9.49%), and extensification (ra – 6.79%, rbf – 6.30%). ‘Rbf’ 
recorded almost the highest contribution in the model of 
intensification (19.34%), together with slope (19.58%). 
However, it is needed to be aware of parallel use of ‘ra’ and ‘rbf’, 
because of their mutual correlation. If the window for 



Rusinko & Minár  

  72 

calculation has size of topographic grain, then ‘rbf’ integrates 
both, ‘ra’ and ‘dd’ (inverted value of wave length). 
Multiplication of ‘ra’ and ‘dd’ approximates ‘rbf’ and expresses 
the average slope of an area [17,18], that is measure of barrier 
effect of the topography or its brake force. 

 

Figure 6.  AUC (ROC curve) of the multiple-variable logistic regression 
models of the land cover changes and independent contribution [%] of single 

predictors to models’ explanatory power. 

Positional geomorphometric variables as ‘tpi’ and ‘tri’ are 
measures of regional difference of potential gravity energy [11] 
that could also affect the land cover formation. It could be 
indicated by ‘tri’ with strong result in the model of urbanisation 
(36.22%) and weaker contribution of deforestation (6.79%). 

The last unexpected result is relative importance of duration 
of solar radiation (intensification – 14.84%, urbanisation – 
9.56%, afforestation – 6.27%). It does not use to be used in 
LUCC modeling, and solar radiation is often represented by 
global or direct radiation which showed low relevance in our 
univariate models. Similar to ‘rbf’, also solar radiation can be 
considered as a combination of another characteristics. In this 
case, slope and aspect. So, it might express their mutual effect 
on changes. On the other hand, the commonly used aspect 
parameter was not important in our analysis. 

Non-morphometric predictors (pop_dens, dist, temp), held 
their stable position in the design of LUCC models. However, 
geomorphometric characteristics were more important. There 
are also cases (extensification and deforestation) where 
elevation and ‘temp’ had high individual contributions. It is well 
known that in mountainous countries (Slovakia), elevation can 
be used as a proxy for climatic characteristics [7], however 
elevation include also influence of gravity energy distribution. It 
can be a reason  of its high individual acquisition to LUCC 
modeling in these cases. 

IV. CONCLUSIONS 
This study tested 21 geomorphometric predictors in logistic 

regression models. Preliminary results (univariate models) 
revealed the most significant variables: ‘tri’, ‘ra’, ‘rbf’, slope, 

elevation, ‘solar_dur’, Casorati curvature, and ‘twi’. Result of 
traditional variables as elevation or slope is not surprising but 
success of some newly used variables is very interesting and 
physically interpretable. Casorati curvature as a measure of 
energetic disequilibrium of land surface [11]. Relative 
importance of wave characteristics: ‘rbf’ and ‘ra’ representing 
regional barrier effect of topography. Priority of duration of 
solar radiation over global/direct radiation. And notable result of 
‘tri’ as a variable of (topographic) position and regional 
difference of gravity energy. Further research is needed to verify 
these results. An unsolved question is still the impact of DEM 
generalisation and changes in the size of computation window 
and sensitivity of land cover change to such technicalities. 
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Abstract—Gully poses a great threat to agricultural production 
and ecological environment. Mapping accurate gully affected 
areas plays an important role in regional environmental 
monitoring and management. In this paper, an object-based image 
analysis method based on Google Earth Engine (OBIA-GEE) for 
mapping gully affected areas was proposed by using Sentinel 2 
imagery and AW3D 30 DEM data. The method utilized the simple 
non-iterative clustering (SNIC) segmentation and the random 
forest (RF) algorithm to segment imagery and map gully affected 
areas. And terrain skeleton lines were further used to optimize the 
mapping results. The proposed method was applied to five study 
areas with different landform types on the Chinese Loess Plateau, 
and the results showed that the method achieved good 
performance with the overall accuracy of 86.44%, user’s accuracy 
of 84.97%, and producer’s accuracy of 83.90%. The OBIA-GEE 
method provides the possibility of large-scale gullies mapping, 
which is beneficial to monitor gullies and manage soil erosion. 

I.  INTRODUCTION 
Gully erosion is a typical form of soil erosion that shapes 

surface morphology, resulting in development of gullies [1-2]. 
Accurately mapping gully affected areas not only provides a 
basis for regional soil and water conservation but also provides 
important guidance for regional environmental management [3].  

There are several gully affected areas mapping methods, 
including visual interpretation methods (VIM), pixel-based 
methods (PBM), object-based image analysis (OBIA) methods 
and deep learning (DL) methods, but the performance of these 
methods still need to be improved. The VIM method relies on 
manual visualization, which is labour intensive and time 
consuming [4]. The PBM based on remote sensing imagery and 
digital elevation model (DEM) are subject to the phenomena of 
salt and pepper noise and the topographic features of different 
study areas [3, 5], while these can be avoided by the OBIA 
method. The OBIA method can improve the mapping’s accuracy 
to some extent [6, 7], but the accuracy at a large scale still needs 
to be improved, mainly due to the limitations of image resolution 
[8]. Studies have used less costly high-resolution Google Earth 
images with DEM data to map gully affected areas [9], but 
Google Earth images do not provide a clear enough spectral 
signal to distinguish gullies with drastic changes in internal 
morphology [10, 11]. Besides, the DL methods are limited to a 
large amount of pixel-level or object-level sample data to 
perform well [12].  

Considering gully affected areas have distinct geometric 
features, textural information, topographic features, and 
complex dynamic spectral characteristics [13], the OBIA 
method and spectral information as well as phenological 
indicators based on temporal patterns, such as normalized 
difference vegetation index (NDVI), should be used to map 
gully affected areas. The Google Earth Engine (GEE) platform 
has gradually become an important platform for large-scale 
geological analysis [14-16]. And Sentinel-2 images offer the 
possibility of mapping gully affected areas [17-18]. Therefore, 
the objective of this paper was to propose an accurate object-
based image analysis method based on Google Earth Engine 
(OBIA-GEE) for large-scale Loess Plateau gully affected areas 
mapping.  

II. MATERIALS AND METHODS 

A. Materials 
Gully erosion is very serious and the degree of development 

of loess gullies varied on the Loess Plateau [19, 20]. Hence, five 
typical Loess Plateau erosion areas representing different 
landform types were selected as the study area herein (Fig. 1(a-
e)). The specific definition of a gully affected area is that the 
upper boundary is along the gully shoulder line, and the lower 
boundary is the channel with a flow accumulation threshold area 
greater than 50 km2 according to the boundary of erosion and 
hydrology [21]. 

All Sentinel 2 surface reflectance data 
(https://developers.goo le.com/earth-
engine/datasets/catalog/COPERNICUS_S2_SR) with less than 
20% cloudiness in 2020 were selected and masked cloud on 
GEE. The median images of red, green, blue, NIR bands and 
NDVI index were obtained every three months as a unit, and a 
total of 20 images were produced to provide dynamic time series 
spectral information. In addition, AW3D30 DEM data derived 
from GEE (https://developers.google.com/earth-engine/ 
datasets/catalog/JAXA_ALOS_AW3D30_V1_1) with 30-
meter resolution were used to calculate topographic factors and 
terrain textural information. A total of 5,150 training samples in 
point format were generated randomly by the randomPoints 
function and manually labelled as gully or non-gully on GEE 
(Fig. 1(a-e)). The validation samples in object format were 
manually drawn based on high-resolution Google Earth images, 
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having an 8 km2 draw for each study area for a total of 40 km2 
(Fig. 1(V1-V10)). 

 

Figure 7.  Map of the study area and samples for training and validation. (a) 
Loess tablelands, SA1; (b) Loess long-ridge fragmented tablelands, SA2; (c) 

Loess ridge hills and gullies, SA3; (d) Loess hills and gullies, SA4; (e) Loess-
aeolian and dune transition zones, SA5. The distribution of training samples 

(a-b) and validation samples (V1-V10) for each study area. 

B.  Methods 
This paper proposed an object-based image analysis method 

based on Google Earth Engine (OBIA-GEE) for mapping large-
scale loess gully affected areas. The main steps were (i) image 
segmentation, which used SNIC algorithm to create objects 
based on heterogeneity of each pixel value, (ii) feature selection 
and random forest, which calculated four types of features 
selected herein as input data to the RF algorithm to map gully 
affected areas, and (iii) terrain skeleton utilization for 
optimization and accuracy assessment, which improved 
mapping results by removing river areas from gully affected 
areas and assessed mapping accuracy based on object samples. 
Fig. 2 shows the techniques flow chart. 

C. Image Segmentation 
Principal component analysis (PCA) was performed using 

spectral median images of Sentinel-2 with 10-meter resolution 
to extract the principal components herein. The top five PCA 
components were selected for image segmentation. The super-
pixel image segmentation method, simple non-iterative 
clustering (SNIC) algorithm on GEE was used for segmentation 
due to its superior segmentation performance [22]. Considering 
the irregular characteristics of gully affected areas and 
comparing different segmentation results with different 
parameter sets, the main parameters of SNIC algorithm were set: 
size = 8, compactness = 0.1, connectivity = 8, and 
neighbourhood size = 256.  

D. Feature Selection and Random Forest 
Four types of features with a total of 50 were calculated for 

each object after image segmentation, including spectral, 
textural, geometric and topographic features. The spectral 
median images of red, green, blue, NIR and NDVI were 
acquired, for a total of 20 images. Topographic factors with 
slope, surface cut depth (SCD), and positive and negative terrain 
(PNT) indices were calculated herein to provide terrain 
information [23]. The terrain textural information was obtained 
by utilizing the gray level co-occurrence matrix (GLCM) with a 
3×3 kernel size for the above three topographic factors, and a 
total of 24 images of textural information were produced [24]. 

The geometric features of each object with area, height and 
width were calculated herein.  

 

Figure 8.  Techniques flow chart. 

Random forest (RF) algorithm is one of the most popular 
predictive classification algorithms due to its simplicity and ease 
of implementation and superior classification performance [25]. 
In this paper, the smileRandomForest classifier on GEE was 
applied to map gully affected areas, with 50 features and 5,150 
training samples as input data, and the number of decision trees 
was set to 100 with other parameters (e.g., bagFraction set to 0.5, 
maxNodes set to no limit) set to default according to the RF 
training results. 

E. Optimization and Accuracy Assessment 
Terrain skeleton lines obtained by the hydrological analysis 

of AW3D30 DEM data with a flow accumulation threshold of 
50 km2 were used to optimize the OBIA-GEE mapping results 
according to the definition of gully affected area herein. Then 
the distance accumulation was applied to obtain the river area, 
and the extracted terrain skeleton lines with the slope of DEM 
data were used as the input data. Finally, river areas were 
intersected with the gully affected area mapping results to obtain 
the gully affected areas with the river removed.  

To judge the accuracy of the mapping results, the confusion 
matrix approach was used to perform accuracy assessment 
herein [26]. The overall accuracy (OA), producer’s accuracy 
(PA) and user’s accuracy (UA) were calculated for mapping 
results after optimization. 

III. RESULTS 
Table I shows the accuracy assessment of the gully affected 

area results for each study area and all study areas. The OA of 
all study areas reached 86.44%, and the PA and UA were 83.90% 
and 84.97%, indicating that the proposed method was applicable 
to the various landform types of the Loess Plateau and had good 
performance. The OA of gully affected areas in each study area 
was higher than 81%. SA3 (87.15%), SA2 (84.37%), and SA4 
(82.68%) had higher UA values, which means that commission 
error was smaller and the omission error was relatively larger in 
the area of intense surface erosion. Moreover, SA1 (91.16%) and 
SA5 (90.34%) had higher PA values, which means that the 
omission error was smaller and the commission error was 
relatively larger in the area of less erosion intensity.  

TABLE III.  THE CONFUSION MATRIX OF THE GULLY AFFECTED AREA 
RESULTS FOR EACH STUDY AREA AND ALL STUDY AREAS. 

Study area PA (%) UA (%) OA (%) 

SA1 91.16 83.81 95.67 
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SA2 76.41 84.37 86.01 

SA3 83.32 87.15 83.54 

SA4 79.96 82.68 81.90 

SA5 90.34 85.46 85.37 

All study areas 83.90 84.97 86.44 

Fig. 3 shows magnified views of mapping results for each 
study area with different landform types. The mapping results 
had reasonable structural characteristics, which reflected the 
spatial continuity of the gullies and the suitability of the method 
for different landforms. Magnified views of SA2, SA3 and SA4, 
where the development of gullies was higher and the area of 
inter-gully land was smaller, so some inter-gully areas were 
misclassified as gully affected areas. For the loess tablelands 
(SA1), the gully affected areas were generally mapped 
accurately. For the loess-aeolian and dune transition zones 
(SA5), the erosion degree was relatively small, and the mapping 
results of the gully affected areas were consistent with the actual 
distribution. 

 

Figure 9.  Gully affected area mapping results were overlaid on Sentinel 
images and DEM images. (a) and (b): SA1; (c) and (d): SA2; (e) and (f): SA3; 

(g) and (h): SA4; (i) and (j): SA5. 

IV. CONCLUSIONS 
An OBIA-GEE method was proposed for the rapid mapping 

of large-scale loess gullies in this paper. By using the SNIC 
segmentation and RF algorithm with multiple features, the loess 
gully affected areas with different landform types were mapped. 
And terrain skeleton lines were used to optimize the gully 
affected area mapping results. The results showed that the 
method achieved good performance, with the OA of 86.44% for 
all study areas, the UA of 84.97%, and the PA of 83.90%. For 
each landform type, the OA was higher than 81.5%. Moreover, 
the OBIA-GEE method is convenient due to the advantages of 
GEE platform. The proposed method will be beneficial for 
studies related to monitoring gullies and managing soil erosion. 
This work also provides a new perspective for large-scale 
landform mapping and the basic idea of this method can be 
extended to map multiple types of topographic objects.  
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Abstract— Accurate classification of cirques is essential for 
studying paleoglacier activities. Longitudinal-profile-based 
classification has advantages over other methods such as expert 
classification and the methods that utilize morphometric 
parameters. Longitudinal profiles method first deploys 
exponential function to fit the longitudinal profiles of individual 
cirque samples and then fits a linear classifier based on the 
exponential coefficient and the cirque height of the cirque sample 
set to classify cirque candidates as cirques or non-cirques, 
However, the existing studies have applied and evaluated 
longitudinal profile based classification using only small number 
(i.e., several dozens) of cirque sample-set collected within small 
study areas. In this study we evaluated the applicability of the 
longitudinal profile method to a larger number of glacial cirques 
from a larger area. The cirque sample set (256 cirques and 101 
non-cirques) of this study was extracted from the southeastern 
Tibetan Plateau. The original linear classifier fitted in previous 
studies, and the linear as well as non-linear classifiers fitted from 
the new sample set were evaluated. The classification accuracy 
results reveal that the longitudinal profile based classification 
method was applicable, and that with the non-linear classifiers 
shows the improved performance than the refitted linear classifier, 
when both were better than that with original linear classifier. 

I.  INTRODUCTION 
The cirque is a glacial erosion landform that reflects the 

glacial imprint on a region as the origin of the mountain glacier. 
Accurate cirque classification facilitates better understanding 
and study of the developmental mechanisms of cirques and their 
coupling with the climate processes [1,2]. 

Cirque classification methods have slowly evolved from 
qualitative to quantitative approaches. Qualitative methods, such 
as expert classification, is based on the experience and 
knowledge of experts obtained from field observations [3]. 
However, expert classification is time-consuming, laborious, 
and difficult to explain and reproduce, making it less suitable for 
classifying cirques across large areas. Expert classification is 
descriptive and usually based on qualitative definition, making 
classification results subjective to different experts’ 
understanding of cirques [4].  

Currently there are two types of quantitative cirque 
classification methods: the morphometric based method, and the 
longitudinal profile based cirque classification. The former 
utilizes six morphometric parameters (including length (L), 
width (W), height (H), L/W, L/H, and area) to cluster cirque 
candidates. The cluster descriptions are defined by statistics of 
morphometric parameters that form classification rules [5–7]. 
However, the morphometric parameters represent insufficiently 
the spatial structural information of the cirques. The cluster 
results of the morphometric parameters method do not 
correspond well to the qualitative expert classification results.  

The longitudinal profile based method for cirque 
classification uses longitudinal profile of cirque to differentiate 
cirques and non-cirques. Longitudinal profiles of cirques can 
effectively reflect spatial structures of cirques – that information 
is useful for understanding the history of development of studied 
cirques [1,8]. In this classification method, an exponential 
function shown in Equation (1) is first fitted on the longitudinal 
profile through the steepest part of the headwall terminated at 
valley-head point of each individual cirque or non-cirque sample. 
Then a linear discriminant function based on the fitting 
parameter of each longitudinal profile, c-value in Equation (1), 
and the height derived from the profile is built and used to 
classify cirque candidates into cirques or non-cirques [9].  

𝑦𝑦 = (1 − 𝑥𝑥)𝑒𝑒𝑐𝑐𝑐𝑐 (1) 

Currently, this method has been verified only through 
classifying a total of 55 samples in the Alps and the High Sudetes, 
and showed reasonable results (overall accuracy is 92.7% and 
F1 score is 0.91) [9]. To our best knowledge, this method has 
not been verified neither with a large sample size, nor within 
other large regions. This study focuses on the assessment of the 
performance of longitudinal profile-based cirque classification 
method on large-amount cirque samples across large area, which 
conducts a preliminary test with both linear and new non-linear 
classifiers. 

II. EXPERIMENTAL DESIGN 
The experiment is designed to evaluate the applicability of 

the longitudinal profile method for cirque classification on large-
number of samples in a large test area (Fig. 1).  
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Figure 1.  Map of the study area and samples of cirques and non-cirques 
manually derived in the study area. This area is in the Mt. Daxue and Mt. 

Qionglai of the Hengduan Range on the southeastern Tibetan Plateau. 

A. Study area and data 
The study area is in the Mt. Daxue and Mt. Qionglai of the 

Hengduan Range on the southeastern Tibetan Plateau (Fig. 1). 
The region is abundant in Quaternary palaeoglacial landforms 
and has been studied by paleoglacier mapping and 
reconstruction. 

The sample set collected in this area includes 256 typical 
cirques and 101 non-cirques with cirque-like forms (Fig. 1). It is 
distinctively larger than the sample set (23 cirques and 32 non-
cirques) reported in a related study [9]. The samples were 
manually delineated based on visual interpretation on Google 
Earth. ALOS PALSAR RTC (with 12.5-m resolution) was used 
to derive longitudinal profiles of samples [10]. 

B. Experimental flow design  
The longitudinal profile based cirque classification has two 

input parameters: the longitudinal profile and the cirque height 
extracted for each sample or cirque-like object. In this study, the 
use of longitudinal profile is the median axis of cirque that 
through the headwall and floor terminated at the cirque threshold. 
It differs from the Krause et al.’s profile through the steepest part 
of the headwall terminated at valley-head point that caused by 

the aims of this study is differentiating cirques and non-cirques 
rather than differentiating cirque and non-cirque valley head [9]. 
The longitudinal profile is generated by assigning the elevation 
of DEM to the median axis of samples that is extracted by an 
GIS tool in ArcMap named Automated Cirque Metric Extraction 
(ACME) Error! Reference source not found.. The exponential 
function is fitted to the longitudinal profiles of training samples 
of cirques. The c-value of the fitted exponential function 
together with the cirque profile height is used to build rules for 
classification of cirque candidates into cirques or non-cirques. 
The original classification rules, built by a linear classifier (or 
discriminant function), are shown as Equation (2): D1 less than 
0 means cirque and D1 larger than 0 means non-cirque) with the 
fitted c-value and the height of longitudinal profile, based on the 
study in the Alps and the High Sudetes based on 55 samples [9]. 

𝐷𝐷1 = 400 × (𝑐𝑐-𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒) − 𝐻𝐻𝑒𝑒𝐻𝐻𝐻𝐻ℎ𝑡𝑡 + 500 (2) 

The original classification rules can be directly applied to our 
study area for testing the extrapolation applicability of these 
rules. Alternatively, parameter-refitting can be applied whereby 
the coefficients in the original rules can be first updated with the 
c-value fitted with the training samples in our study area and 
then applied to classification. Direct application of the c-value is 
called “original-rule” while parameter refitting is called 
“coefficient refitted-rule”. In addition to these two rules based 
on linear classifier, non-linear classifier can also be explored for 
this method. This study further tested the adoption of non-linear 
classifiers, i.e., a curve-formed classifier, and a machine learning 
classifier (multi-layer perceptron).  

The experiment workflow is shown in (Fig. 2). The hold-out 
method is applied to the sample set for testing the classification 
method with coefficient refitted-rule and non-linear classifiers. 
The sample set was randomly separated, with 70% of cirque and 
non-cirque samples used for training and the remaining 30% for 
testing. For comparing classification accuracy between 
application of the original-rule, the coefficient refitted-rule and 
the two non-linear classifiers, the original-rule was also 
evaluated by the training set and test set separately.  

Classification indices (i.e., precision, recall/sensitivity, 
specificity, F1-score, and accuracy) were calculated for 
evaluating the performance of cirque classification methods.

Data

Longitudinal profile
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objects Classification 
resultsHeight of the 
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Figure 2.  Flow chart for the experiment.

III. RESULTS 
Examples of the longitudinal profile of a cirque and a non-

cirque corresponding normalized profiles with c-value are 
shown in Fig. 3a and 3b. The concavity of cirque candidates is 
decreased with c-value increasing, with a c-value of zero 
indicating that the cirque candidates consist of a straight slope. 
Fig. 3c shows fitted curves of cirques and non-cirques, in which 

the blue dashed line and red dashed line represent the fitted 
curve of median c-value in cirques and non-cirques, respectively. 
The median c-value of cirques is around -1.5 and the median c-
value of non-cirques is around -0.2. The actual cirque profile is 
concave under past glacial erosion, meaning the c-value should 
be less than zero. However, Fig.3c shows three c-value of 
profiles higher than zero, which might be because there are 
errors between profiles extracted by the median axis and actual 
profiles of a few cirque candidates. 

𝐷𝐷2  
 
 

𝐷𝐷3  
 
 

𝐷𝐷1  
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Figure 3.  Examples of the longitudinal profiles of cirque and non-cirque 
based on slope map (a) and corresponding fitted profiles with c-value (b). The 

fitted curves for the longitudinal profiles of cirques and non-cirques (c). 

Fig. 4 shows the distribution of height and c-value of cirque 
and non-cirques, and the linear discriminant function refitted by 
the training samples in the study area. The linear discriminant 
function of the coefficient-refitted rule is shown in Equation (3). 

The non-linear curve-formed classifier is shown in Equation 
(4).  

𝐷𝐷2 = 485.7 × (𝑐𝑐-𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒) − 𝐻𝐻𝑒𝑒𝐻𝐻𝐻𝐻ℎ𝑡𝑡 + 667.7 (3) 
𝐷𝐷3 = 666.9 × (𝑐𝑐-𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒)3 + 2707.4 × (𝑐𝑐-𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒)2 +

3540.3 × (𝑐𝑐-𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒) − 𝐻𝐻𝑒𝑒𝐻𝐻𝐻𝐻ℎ𝑡𝑡 + 1701.7 (4) 

Table I shows classification accuracy of the longitudinal 
profile cirque classification method using linear and non-linear 

classifiers under test. The results indicate that classification 
using the original rule (F1=0.9 for training set, and F1=0.92 for 
test set) is inferior to all other methods: coefficient-refitted rule 
(F1=0.93 for training set, and F1=0.96 for test set), curve-
formed rule (F1=0.95 for both training and test sets), and 
multilayer perceptron (F1=0.96 for training set, and F1=0.94 for 
test set). The original rule shows very high sensitivity but 
modest specificity (51.4% and 54.8% for training and test sets, 
respectively) while other classifiers have higher specificity 
(74.3%-91.6%) and lower sensitivity (93.4%-98.6%). The 
original rule will produce more false positives than other rules, 
while other three classifiers will misclassify 4-6% of true 
cirques as non-cirques. 

 

Figure 4.  Scatter plot of the c-value and cirque height from training set in 
this study. Red line is original linear discriminant line (the function D1 as 

Equation (2)). And the coefficient refitted linear discriminant line (the 
function D2 as Equation (3)) is in black color. Green curve is the non-linear, 

curve-formed classifier (the function D3 as Equation (4)). 

TABLE I . COMPARISON OF CLASSIFICATION ACCURACY FROM METHODS WITH LINEAR AND NON-LINEAR CLASSIFIERS RESPECTIVELY. 

Classification 
indices 

Linear classifier Non-linear classifier 
Original rule Refitted rule Curve-formed classifier Multilayer perceptron 

Precision 83.80% 84.40% 90.50% 92.60% 96.60% 94.80% 95.80% 93.90% 
Recall/Sensitivity 97.80% 100.00% 95.60% 98.70% 93.40% 96.10% 96.30% 93.90% 
Specificity 51.40% 54.80% 74.30% 80.70% 91.60% 87.10% 88.40% 87.50% 
F1-score 0.90 0.92 0.93 0.96 0.95 0.95 0.96 0.94 
Accuracy 84.80% 86.90% 89.60% 93.50% 92.90% 93.50% 94.20% 91.80% 

 CL CL DF CL DF CL DF CL 
a. DF: Data fitting, CL: Classification 

Overall classification performance of the coefficient-
refitted rule (Equations 3) and new non-linear classifiers (the 
curve-formed classifier of Equation (4), and multi-layer 
perceptron) have improved that from the original rule, with 
marked improvement of specificity, but with a trade-off of 
slightly lower sensitivity of predictions. 

IV. DISCUSSION 
The linear classifier originally used with the longitudinal 

profile based cirque classification method showed relatively 
poor performance (besides on the Recall/Sensitivity index) 
because of low specificity of cirque classification. The overall 
evaluation of the longitudinal profile classification of cirques 
using rule-of-thumb shows that all rules under test provide very 
good classification (F1≥0.9) while the refitting and non-linear 
classifiers further improve classification (F1>0.93) (Table 1). 
Note that the curved-formed classifier shown in Fig. 4 is 
appropriate for differentiating cirque and non-cirques with 
statistically significant results in this dataset. However, it relied 

on visual interpretation that is not automated. Comparatively, 
the multi-layer perceptron classifier is automatic, which is 
convenient for wide applications.  

V. CONCLUSION 
In this study, the longitudinal profile based classification 

method shows improved performance in classifying cirques and 
non-cirques on the southeastern Tibetan Plateau with a large 
sample size, when the coefficient-refitted linear classifier and 
the two non-linear classifiers were adopted respectively. 
Further refinement of classification methods is likely to 
produce highly accurate cirque classification. In future work, 
we will also increase the number of manually mapped cirques 
and non-cirques in other areas on the southeastern Tibetan 
Plateau and explore other machine learning methods for further 
improvement of glacial cirque classification. 
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Abstract— Karst caves constitute an essential element of natural 
landforms. Construction of an accurate 3-D model of karst caves 
is crucial to guide geological exploration, underground space 
development, and safety in building construction and operation. 
Karst caves' subterranean location and various challenges such as 
weak lighting, attenuated satellite positioning signals, texture 
degradation, and unstructured surface scenes make true 3-D 
modeling of underground spaces challenging. Current methods of 
true 3-D modeling rely mostly on expensive and complex lidar 
scanning combined with ground mobile platforms or 
supplemented light source photography and multi-view stereo 
reconstruction. However, these methods are costly for karst cave 
reconstruction. Our proposed method for reconstructing the true 
3-D model of the cave relies on the adaptability of a depth camera 
to low light environments. It is based on the data captured by an 
onboard depth camera of a drone for visual autonomous 
positioning and the surface reconstruction of unstructured scenes. 
We reconstructed the true 3- D model of Xuansu Cave located in 
Chibi City, Hubei Province, China. Experimental results 
demonstrate that the proposed method has the potential to 
reconstruct the true 3-D model of the underground karst cave 
surface efficiently and with stability. Furthermore, the use of light 
and small drones equipped with depth cameras presents a low-cost 
solution. These drones provide fast and reliable exploration of 
underground caves and offer true 3-D model reconstruction 
capabilities. 

I.  INTRODUCTION 
Karst caves are underground spaces formed through the 

process of karstification in soluble rocks and can differ in scale. 
The cave can have varying shapes, with some parts resembling 
squares and others resembling narrow promenades. Karst caves 
exhibit unique and intricate shapes and contain a complex 
structure of various features such as stalagmites, stone pillars, 
and stalactites. The complex composition of these natural 
features creates peculiar landscapes, as demonstrated in Figure 
1. Karst caves are abundant in resources that include water, 
minerals, tourist attractions, historical and cultural significance, 
and more. Consequently, conducting an investigation and 
implementing management practices in underground spaces 
such as karst caves is vital in enhancing the 3-D monitoring and 
preservation of natural resources. 

 
Figure 1 Xuansu Cave, located in Chibi City, Hubei Province, China 

 
The traditional digital terrain model (DTM) uses pictures 

with 3-D effects to map on a flat 2-D base map to create a 3-D 
visual representation. It is a fundamentally 2-D model, 
sometimes referred to as a "2.5-D model". The "2.5-D" model 
only contains prefabricated textures with 3-D effects, making it 
viewable from only a fixed angle and limiting its ability to meet 
the observation needs of differing directions and heights of 
terrain and landforms. Additionally, the analysis function is 
identical to that of the 2-D model. Another "2.5-D" model 
renders elevation data from 2-D data to achieve a visual 3-D 
representation. While a certain level of 3-D analysis can be 
achieved through elevation data, the reconstruction method is 
not sophisticated enough to provide a detailed description of 
natural landforms such as caves with complex structures. A true 
3-D model is the most intuitive representation of the real world. 
It is a digital space that reflects and expresses the ecological 
space in a certain range in a real, 3-D and time-series manner. 
It is a standardized product of new basic surveying and mapping 
and an essential new infrastructure that provides a unified 
spatial base for economic, social development, and 
informatization. Consequently, the development of a true 3-D 
model of the interior surface of a scene like a cave has become 
one of the most direct and efficient methods for the investigation 
and monitoring of underground space resources. Generally, the 
true 3- D model of underground space can be constructed by 
various methods, including airborne laser scanning (Airborne 

https://doi.org/10.5281/zenodo.7857527
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Laser Scanner, ALS) [1–3], terrestrial laser scanning (Terrestrial 
Laser Scanner, TLS) [1,2], Restoring Structure-Motion from 
Multi View Stereo (SfM-MVS) [4,5], and Simultaneous 
Localization and Mapping (SLAM) technology. The scanning 
method typically depends on costly and bulky lidar equipment 
that requires a high load capacity for the mounting platform, and 
the material within the cave may cause the laser scanning to 
deteriorate. However, the SfM-MVS approach necessitates 
uniform lighting conditions in dark caves, necessitating the use 
of professional photographic lighting equipment, which can be 
challenging to acquire in large caves. 

We have devised a method for constructing an accurate 3-D 
model of a cave using depth camera SLAM. We utilize a small 
quadrotor UAV as a mobile platform to conduct experiments in 
a cave situated in Chibi City, Hubei Province, China, as depicted 
in Figure 2. We provide a detailed description of the specific and 
experimental processes involved in the method, along with the 
analysis, below. 

 

 
Figure 2 The UAV scanning the karst cave 

 

II. METHODOLOGY  
To mitigate the effects of lighting factors, we utilize only the 

depth image data obtained from the airborne depth camera to 
construct a 3-D model of the cave surface. Using a Truncated 
Signed Distance Field (TSDF) algorithm and a continuous input 
of depth image frame sequences, 3-D points with sensor 
uncertainty are fused to create a dense 3-D point cloud model. If 
a model point �̅�𝑃𝐻𝐻 reappears in the point cloud fusion process and 
is observed by the depth image 𝐼𝐼𝐼𝐼 again, we re-calculate its 
vertex coordinates �̅�𝒗𝐻𝐻 and normal �̅�𝒏𝐻𝐻, as indicated by 

Positioning Figures and Tables: Place figures and tables at 
the top and bottom of columns. Avoid placing them in the 
middle of columns. Large figures and tables may span across 
both columns. Figure captions should be below the figures; table 
heads should appear above the tables. Insert figures and tables 
after they are cited in the text. Use the abbreviation “Fig. 1”, 
even at the beginning. 

Eq. 1 

where 𝑐𝑐𝑐𝐻𝐻 represents the weighted number of times the 
model point is observed, and 𝒗𝒗(𝒖𝒖) and 𝒏𝒏(𝒖𝒖) are the 3-D 

points and their normal projected from pixel 𝒖𝒖 in the depth 
image 𝐼𝐼𝐼𝐼 to the world coordinate system, respectively. 
Different from the traditional point cloud fusion method [6], 
we introduce a confidence factor 𝛼𝛼, so that the number of 
observed model points 𝑐𝑐𝑐𝐻𝐻 is weighted average as 

Eq. 2 

This is based on the assumption that the normalized radial 
distance 𝛾𝛾 of the depth camera measurement error from the 
center of photograph is Gaussian distributed, so 𝛼𝛼 is expressed 
as 

 Eq. 3 

where 𝜎𝜎 = 0.6 is the experience value. 

Our point cloud fusion modeling method provides robust 
denoising results, especially for depth cameras at the consumer 
level with significant sensor uncertainty. Finally, to obtain the 
surface of the reconstructed scene, we use ray casting and 
trilinear interpolation to extract the zero-crossing surfaces that 
are implicitly stored in the TSDF voxel grid. 

The usage of regular voxels to store TSDF data to manage and 
reconstruct the surface of the scene has the potential to be sparse 
[7]. However, this sparsity significantly wastes memory 
resources, increases the computational burden of the algorithm, 
and negatively affects system performance. To address these 
issues, we use a simple hashing scheme to compactly store, 
access, and update the implicit surface in our work. This 
approach enables us to achieve scalable true 3-D reconstruction 
in large-volume caves and significantly conserves the limited 
computing and storage resources. Unlike the practice of pre-
setting the reconstruction range of rules [6,8], which is not 
feasible for unstructured underground caves due to their 
unknown and ever-changing geometry, our approach is more 
suitable for this type of environment. Additionally, to 
accommodate large-scale reconstructions, we employ a 
bidirectional CPU-GPU data flow scheme [7]. This is achieved 
by creating an active area, containing the reconstructed surface 
and a secure zone around the current depth camera perspective, 
which moves with the camera. To ensure efficient use of 
resources, when the camera moves beyond a certain distance 
from the current position, the voxel block data that was initially 
in the active region is streamed from the GPU and may either be 
saved to the CPU or to a disk. If the camera returns to the 
previously reconstructed area, the voxel block data for that 
region is then streamed from the CPU to the GPU in the same 
way. This combination of dataflow schema and hashing schema 
is ideal for the reconstruction of unstructured scenes, as it does 
not necessitate the reorganization of the hash table for input or 
output voxel blocks. 

Obtaining accurate image poses is crucial before utilizing 
depth images for surface reconstruction. However, on UAV 
platforms, traditional pose estimation methods often fail due to 
the camera's fast movement, which leads to incorrect pose 
estimation results. To address this issue, we estimate the pose of 
the airborne depth camera in real-time, using the method of 
particle swarm template stochastic optimization [8]. However, 
in contrast to the existing literature [8], we adopt a sparse scene 
expression in our approach, wherein the number of particles 
participating in fitness calculations is limited by the active area 
constructed. Specifically, only the most effective pixels of the 
current frame can be projected to the sparse scene in the particle 
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swarm template. The particles that correspond to the surface of 
the scene and are located in the active region calculate their 
surface fitness and are processed in parallel on the GPU. The 
aim of this approach is to estimate the fast-moving camera's pose 
while also conserving the onboard computer's limited computing 
and storage resources, thereby expanding the UAV's operating 
range to a larger area. Our experiments demonstrate a 
remarkable enhancement in the efficiency of our position 
estimation method compared to the existing literature [8]. 

III. PRELIMINARY RESULT 
Our mobile platform is the AMOV P450 UAV, which has a 

wheelbase of 450mm and a 1kg payload capacity. It comes 
equipped with an Intel RealSense D435i depth camera with an 
effective measurement distance of 8m. All of our experiments 
were conducted on the Nvidia Xavier NX embedded computing 
device, which boasts a six-core ARM Cortex-A57 CPU and a 
dual- core NVIDIA Denver 2.0 CPU that provide processing 
capabilities of 1.3 TFLOPS. The device is further equipped with 
8GB of LPDDR4x RAM, along with a NVIDIA Volta GPU with 
512 CUDA cores, and 16GB of high-speed HBM2 memory, 
enabling quick and efficient data transfer and processing. Our 
experiments were conducted in Xuansu Cave, an underground 
cave located in Chibi City, Hubei Province, China. 

 
Figure 3 (a) and (b) represent the data acquired by the airborne depth 

camera, there is motion blur in (a), and (c) represents the real 3-D model 
reconstructed from its perspective. 

Equipped with a depth camera and an onboard computer, the 
UAV scans the cave's interior. Our use of the path planning 
algorithm [9] results in a fully autonomous UAV reconstruction 
task process that requires no manual intervention. The path 
planning algorithm, proposed SLAM algorithm, and two-way 
communication channel between the UAV and the ground are 
all facilitated via the Robot Operating System mechanism on the 
airborne computer. Our experiments prove the effectiveness of 
the depth-only positioning method [8] due to the insignificant 
effect of motion blur on the depth image, as opposed to the color 
image, which could be affected. This observation is shown in 
Figure 3. The intel Nvidia Jetson Xavier NX computer processes 
the 320x240 depth images in real-time for UAV positioning, 
attitude determination, and scene reconstruction with a 
processing rate of 40 frames per second, significantly faster than 
the rate stated in the literature [8]. This speed is due to our 
method's beneficial usage of scene sparsity and active area 
constraints to accelerate stochastic optimization of particle 
swarm templates. Lighting fixtures were installed in the cave to 
enhance the reconstructed 3-D model's display, allowing for the 
color of the point cloud to be captured and utilized in rendering 
a true 3-D model in color. We present a tunnel of the 
reconstructed 3-D model in Figure 4. Figure 4 illustrates our 
method's ability to reconstruct the tunnel's basic geometric 
shape, with clear geometric texturing of the tunnel walls. Our 
approach largely reconstructs the scene's inherent geometric 
structure. Our positioning method relies solely on the depth 
image acquired by the depth camera for autonomous UAV 
positioning. While the color image obtained by the depth camera 

is used only for rendering purposes, our method does not depend 
on color textures. 

 
Figure 4 The true 3-D model of Xuansu Cave reconstructed using our method. 

IV. DISCUSSION AND CONCLUSION 
Despite challenges such as attenuated satellite positioning 

signals, weak lighting, texture degradation, and unstructured 
surface scenes, our use of a depth camera enables the UAV's 
autonomy in obtaining geometric information of the 
underground natural landforms. This results in successful high-
precision real- time scene reconstruction and positioning. 

Unfortunately, due to the limited measurement distance of 
current consumer level depth cameras, resulting in a 
considerable number of invalid depth values in depth images 
obtained in too open scenes, which severely impedes the 
application of autonomous reconstruction in large scenes. 
Besides enhancing the depth camera to increase its measurement 
range, constructing a path planning method for drones to scan 
close to the surface of the scene is a direction deserving 
researchers' attention. 
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Abstract—In this article, we analyze how the flight paths of RPA 
surveys and the presence/absence of Ground Control Points 
(GCPs) will impact the surface reconstruction of a stable landslide 
in southeastern Brazil. We compare the SfM-MVS results from 
two surveys (2019/2021) in terms of their completeness, 
georeferencing, and morphometry.  The 2019 flight consist of a 
simple grid pattern, without precise geometric control given by 
GCPs. In the 2021 campaign, four flight patterns (two simple grids 
and two cross-grids) were deployed. The data were processed as 
the individual flights as well as a combination of the two simple 
grids and two cross-grids. The combination of the simple grids 
resulted in the most complete DSM, at the expense of a larger 
processing time. The DSM from the combined cross-grids had 
fewer voids than those from the simple grids, but with the 
downside of requiring two flights and longer processing time. Our 
results indicate that one simple grid flight will be enough to 
produce a good reconstruction of the surface, with a short 
processing time. 

I. INTRODUCTION 
Remotely Piloted Aircrafts (RPAs), or simply “drones”, are 

essential tools to acquire high-resolution geospatial data in 
various scientific fields. RPAs offer an easy-to-use, low-cost, 
and off-the-shelf solution to capture aerial imagery, geophysical 
data, or collect samples, depending on the payload carried by 
these platforms. 

Digital imagery collected by RPAs can be used to generate 
high-resolution (i.e., centimeter-level) Digital Elevation Models 
(DEMs) using Structure from Motion-Multi View Stereo (SfM-
MVS) algorithms [1]. Given that the majority of cameras 
onboard RPAs operate on the visible and near-infrared spectrum, 
the SfM-MVS process will produce a Digital Surface Model 
(DSM), that is, a surface that represents the top of canopy and 
man-made structures [2]. 

In this article, we analyze how the flight paths of RPA 
surveys and the presence/absence of Ground Control Points 
(GCPs) will impact the surface reconstruction of a stable 
landslide in southeastern Brazil. We compare the SfM-MVS 
results from two surveys campaigns in terms of their 
completeness, georeferencing, and morphometry. Based on the 
results, we discuss their implications in terms of different 
scenarios, such as multi-temporal monitoring or situations of 
rapid response to landslide events. 

II. STUDY AREA 
The area selected is located in the Town of São Sebastião, 

São Paulo State, southeastern Brazil. It consists of a hillslope 
vegetated by tall grass with a shallow landslide measuring 
approximately 250x100m (Fig. 1). Historical satellite imagery 
shows that the first ruptures of the landslide occurred around 
2002 (Fig. 1A). 

 

Figure 1.  Location of the study area in southeastern Brazil and historical 
satellite imagery showing the development of the studied landslide. 

III. METHODS 
Fieldwork for the RPA surveys was carried out in October 

2019 and May 2021. Images were acquired by a DJI Phantom 4 
Pro V2 RPA, carrying a 1′′ CMOS 20MP sensor, with global 
shutter and 8.8 mm focal distance (24 mm at 35 mm equivalent). 
Flight missions were planned and executed with the 
MapPilotPro app (https://www.mapsmadeeasy.com/) using the 
“Terrain Aware” option to plan flights with constant height 
above ground, providing a constant Ground Sampling Distance 
(GSD) throughout the study area, regardless of elevation 
differences. The flight height is based on an SRTM DEM [3]. 

The 2019 campaign had a reconnaissance objective, so the 
RPA flights were performed without deploying targets to be 
used as GCPs. Two missions were flown (Flight #1 - Fig. 2B) 
with height above ground of 100 m, 70% overlap along and 
across-track, and camera positioned at -85º. 
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In the 2021 campaign, nine targets were positioned around 
the landslide area (Fig. 2A) and their coordinates were 
determined using a Spectra Precision SP60 DGPS in a base-
rover static configuration and raw data was post-processed in 
Survey Office 4.10 software, using the Ubatuba Station of the 
Brazilian GNSS Network as reference. 

The 2021 flight missions were planned to allow a 
comparison of different flight patterns in the 3D reconstruction. 
Two simple patterns were flown with height above ground of 
100 m, 80% overlap along and across-track, and camera 
positioned at -85º (Flights #2 and #3 - Figs. 2C,2D). Two “cross-
grid” patterns were flown with height above ground of 120 m, 
70% overlap along and across-track, and camera positioned at -
85º (Flights #4 and #5 - Figs. 2E,2F). Each flight was processed 
individually as well as the combination of flights #2+#3 and 
#4+#5.  

Figure 2.  A) Ground Control Points used for georeferencing the SfM-MVS 
reconstructions. B-F) Flight missions of the RPA surveys. Dashed lines 

indicate the RPA path to and from the takeoff point. 

The combination of flight lines with different orientations is 
recommended to mitigate distortions from the camera’s self-
calibration [4], while the combination of cross-grid patterns with 
lower overlap intents to simulate the amount of overlap of the 
simple pattern flights, but with flight plans that are faster to 
execute [5]. 

The SfM-MVS workflow was processed in Agisoft 
Metashape Pro version 1.7.1 (https://www.agisoft.com). In the 
SfM step, images were aligned with ‘High’ accuracy. Camera 
alignment optimization was performed considering a marker 
accuracy of 0.005 m. The MVS step was set to ‘High’ quality 
and ‘Moderate’ depth filtering. 

To evaluate the ‘completeness’ of the reconstructions, the 
point clouds were imported into GRASS-GIS using the r.in.xyz 
module as rasters with 10 cm resolution. We set a mask to limit 
the analysis to the mid and upper portion of the landslide and 
counted the number of empty (void) pixels. 

The subsequent analyses were run using DSMs with 25 cm 
resolution. The point clouds were imported using the r.in.xyz 
module, and the voids were filled with bilinear splines. We 
evaluated the descriptive statistics of each DSM as well as 
topographic profiles and surface roughness, calculated as the 
standard deviation of slope [6] using moving-windows with 3x3 
pixels.  

IV. RESULTS 
Processing of the DGPS data resulted in horizontal precision 

ranging from 0.003-0.005m and vertical precision between 
0.007-0.012m. The characteristics of the point clouds from the 
SfM-MVS workflow are summarized in Table I, including the 
processing time and the number of voids (i.e., empty 10 cm 
pixels). Figure 3 shows the distribution of voids for the 2021 
flights (2-5 and combinations).  

TABLE I.  CHARACTERISTICS OF THE POINT CLOUDS  

Flight Photos Pts.SfM Pts.MVS Proc.Time Voids 

1 90 262,691 62,228,877 00:09:59 17094 
2 240 701,467 135,262,726 00:36:47 5206 
3 208 585,187 136,205,251 00:29:59 5905 
2+3 448 1,285,173 164,681,081 01:33:24 1448 
4 157 496,613 103,268,426 00:20:48 13710 
5 209 572,845 120,873,488 00:35:41 9220 

 

Figure 3.  Distribution of voids for the analyzed flight missions. Each dot 
represents one empty 10 cm pixel.  

Processing time varied from ~10’ for flight #1 (2019) to ~30’ 
for the single and cross-grid flights (2021), up to ~1:30 for the 
combined flights. The combination of flights resulted in a 
significant decrease in the number of voids, both for the simple 
and the cross-grid flight patterns (Figs. 3C and 3F). 

The combination of the cross-grid flights #4 and #5 resulted 
in a dense point cloud with a similar number of points to the 
simple flights #2 or #3, despite a longer processing time. The 
combination of simple flights #2 and #3 resulted in ~3-4x fewer 
voids than in the simple flights, occurring mainly in areas of 
shadows or dense vegetation. 

Five topographic profiles were extracted from the DSMs 
with 25 cm resolution. The results from the 2021 flights are all 
very similar, and no visual differences can be identified (solid 
lines in Fig.4). Profiles from the 2019 flight (dashed lines in 
Fig.4), in which no GCPs were used, show only a small 
difference in the horizontal position compared to the 2021 flights. 
The vertical position, on the other hand, is almost 60 meters 
lower than its true value. 

https://www.agisoft.com/
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Figure 4.  Topographic profiles for the 2019 (dashed lines) and 2021 flights 
(solid lines). 

In the histograms of Fig.5, the curves of the 2021 DSMs 
overlap almost perfectly, except for the interval between 20 m 
and 40 m, which corresponds to the densely vegetated area in 
the NW portion of the surveys. The curve of the 2019 flight 
shows a similar shape to the 2021 flights, but shifted to the left 
in the X-axis, as a consequence of the difference of ~60 m in 
elevation. 

Figure 5.  Histograms for the 2019 (dashed line) and 2021 flights (solid 
lines). 

Descriptive statistics of the 25 cm-resolution DSMs are 
presented in Table II. All DSMs from the 2021 campaign show 
similar results, with small differences in the minimum and 
maximum values.  

TABLE II.  DESCRIPTIVE STATISTICS OF THE DSMS 

Flight min max mean median std. dev. 
1 -35.076 89.981 13.157 3.541 30.311 
2 19.877 149.344 68.423 58.758 31.537 
3 19.859 147.865 68.413 58.774 31.545 
2+3 19.860 148.002 68.387 58.749 31.562 
4 20.516 146.984 68.506 58.809 31.456 
5 19.514 148.130 68.487 58.806 31.462 
4+5 19.127 148.130 68.392 58.741 31.549 

 

 

V. DISCUSSIONS AND CONCLUSIONS 
 

Visually, all the resulting DSMs are similar. Processing time 
was around 20-30’ for the simple and cross-grids, and 1:30’ for 
the combinations. The DSMs from the simple grid flights had 
fewer voids than any of the cross-grid flights. The combination 
of the simple grids resulted in the most complete DSM, at the 
expense of a larger processing time. The intention of combining 
cross-grid flights was to simulate the amount of overlap of the 
simple grid flights. Indeed, the DSM from the combined cross-
grids had fewer voids than those from the simple grids, but with 
the downside of requiring two flights and longer processing time. 

Topographic profiles extracted from the DSMs of 2021 are 
virtually indistinguishable one from another, confirming that the 
flight patterns did not influence the surface reconstruction. 
Profiles from the 2019 DSM show small differences in shape 
that can be attributed to changes in the tall grass vegetation 
covering the hillside. The main difference is with respect to the 
Z-axis, where the 2019 DSM is about 60m lower than the 2021 
DSMs. 

The presence of vegetation cannot be dismissed when 
interpreting these data, as the SfM-MVS process will generate a 
DSM and not a DTM. If the area of interest is covered by dense 
vegetation, one must consider the use of lidar, as the multiple 
returns of the laser pulse (in the case of airborne lidar) or the 
very high density of points/m2 (in the case of RPA-borne lidar), 
allow the removal of vegetation and creation of a “bare earth” 
surface. 

In situations of rapid response to landslide events, time is of 
utmost importance. Our results indicate that one simple grid 
flight will be enough to produce a good reconstruction of the 
surface, with a short processing time. In such situations, 
deploying GCPs and collecting coordinates with DGPS might 
also not be a feasible task (both in terms of time, accessibility, 
and safety).  

We show that the DSM produced without GCPs had little 
difference in the XY coordinates from those where GCPs were 
applied; the main difference was in the Z-axis, which can be 
easily adjusted in a GIS environment based on other data (such 
as previous DSMs/DTMs or topographic maps). In this case, it 
is important to plan the flights to cover a larger area, to capture 
features that can be used in the georeferencing, and to set the 
camera position to off-nadir (85º is sufficient), to prevent dome-
shaped distortions in the results. Mapping a larger area also 
allows for monitoring the landslide without GCPs, since point 
clouds or DSMs from different dates can be aligned based on 
their stable features.  

Given that landslides usually occur in areas of high relief, the 
flight plans should consider the terrain and be executed with 
constant height above ground, to provide a consistent pixel size 
across the region. 
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Abstract—Geomorphometry research largely relies on 3-
dimentional land surface models, especially for natural landforms 
with steep slopes and large complex artificial structures. The 
traditional Digital Elevation Model (DEM) encounters difficulties 
in representing detailed features in such scenes. To address this 
issue, this paper introduces a concept of a “true 3D surface” and 
proposes a multiple Unmanned Aerial Vehicle (UAV) 
collaborative method for high- quality reconstruction of a true 3D 
surface. We established an evaluation model of scene 
reconstruction based on the Multi-View Stereo (MVS) modeling 
rules, and utilized the Fibonacci approach to select the optimal 
viewpoints. We also adopted the method of finding the next-best-
view for each UAV in turn to extend the multi- UAV trajectory. 
This method involved trade-offs between energy consumption and 
scene reconstruction to enhance the contribution of viewpoints for 
improved reconstruction quality of the true 3D surface. Real flight 
experiments were conducted over the Wuhan University Teaching 
Building and the Fangshiwan Bridge in Chibi, which revealed a 
significant improvement in the completeness and precision of the 
true 3D surface constructed by our proposed method when 
compared to vertical photography techniques. 

I.  INTRODUCTION 
Building a 3D model of large scenes is essential for a better 

understanding of terrain and geomorphology, especially when 
repeated observations and analyses are required. Traditional 
DEMs are widely used in terrain modeling as they can visually 
display terrain information of the scene. However, DEMs often 
struggle to depict detailed facade features of certain natural 
landforms with large drops, such as the Loess Plateau (Fig. 1a), 
and large-scale artificial structures, such as tower buildings (Fig. 
1b); hence, they do not represent a true 3D surface model. 

A true 3D surface goes beyond the visualization of 
topography in large-scale scenes as it captures sufficient surface 
details from all angles, including elevations. Compared to 
traditional DEMs, true 3D surfaces contain more information 
and hence provide greater assistance for topography-related 
research. 

Due to the rapid development of UAV technology, a single 
high-resolution camera-equipped commercial UAV is now 
available at a lower cost and has found use in various industries 
[1-3]. Based on advanced MVS technologies like MVE [4], 
COLMAP [5], and Pix4D [6], even monocular cameras on 
UAVs can reconstruct a very detailed true 3D surface. 

 

 

 

 

(a) Loess plateau (b) Tower 
buildings 

Figure 1. Natural landforms and artificial features with a large drop 
 

Several studies have explored the true 3D surface 
reconstruction of ground surfaces using a single UAV based on 
the MVS technique [7, 8]. However, most of these studies relied 
on the traditional vertical photography method, which fails to 
adequately collect elevation data. As a result, the reconstructed 
models did not have sufficient elevation details to represent true 
3D surfaces. Alternative studies on collecting elevation data by 
manually-controlled UAVs have shown the drawbacks of being 
time-consuming, laborious, and challenging to ensure the 
model's completeness and precision [9]. 

This paper introduces a multi-UAV collaborative method 
capable of reconstructing a true 3D surface. Our proposed 
method can efficiently devise a collision-free data acquisition 
path that maximizes scene reconstruction. This allows for 
autonomous image data acquisition using multiple UAVs which 
results in a high-quality, precise true 3D surface, based on MVS. 

II. METHODS  
Our proposed multi-UAV collaborative method consists of 

three stages. In the first stage, we establish a coarse proxy of the 
scene through vertical photography and randomly generate 
sampling points on this proxy. We then employ MVS modeling 
rules to construct the reconstruction model of the sampling 
points. In the second stage, multi-UAV trajectories are planned 
by finding the next-best-view (NBV) in a comprehensive 
evaluation considering scene reconstruction, flight energy 
consumption, and distance between the multi-UAV trajectories. 
By doing so, our method can plan a collision-free data 
acquisition path that maximizes the scene reconstruction. In the 
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third stage, the UAVs collaboratively capture images 
autonomously along the planned trajectories, and a high-fidelity 
true 3D surface is reconstructed through MVS. Figure 2 provides 
a general summary of our proposed method. 

 

Figure 2. Overview: The first stage: obtain the proxy model and 
complete the establishment of the reconstruction model. The second stage: 

multi-UAV extend trajectories in turn. The third stage: multi-UAV 
collaborative image acquisition, and establish the true 3D surface. 

A. Reconstruction Model of 3D Surface 
To fully capture the image data of the scene, and reconstruct 

a fine and complete true 3D surface, we need to avoid planning 
a wrong trajectory that leads to collision between the UAVs and 
the ground surface or other obstacles. To achieve this, we can 
get a coarse proxy of the scene in advance. A DEM can be 
directly used as the coarse proxy, or we can carry out two-
dimensional coverage of the scene by vertical photography of 
UAV. After that, a coarse proxy of the scene can be quickly 
established based on MVS. 

Given a number of viewpoints 𝑉𝑉 = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣n} , we 
perform Poisson-Disk Sampling on the surface of the coarse 
proxy to obtain the sampling points 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑠𝑠}. 
According to the reconstruction rules of MVS, we can establish 
a reconstruction contribution model of viewpoints 𝑣𝑣𝐻𝐻, 𝑣𝑣𝑣𝑣 to 
sampling point 𝑠𝑠𝑘𝑘, which is shown in Figure 3: 

𝑐𝑐(𝑠𝑠𝑘𝑘, 𝑣𝑣𝐻𝐻, 𝑣𝑣𝑣𝑣)  =  𝑤𝑤1(𝛼𝛼)𝑤𝑤2(𝐼𝐼1,𝐼𝐼2)𝑐𝑐𝑐𝑐𝑠𝑠 (𝜃𝜃𝑚𝑚)     Eq. 1 

where 𝛼𝛼 is the angle between 
𝑆𝑆𝑘𝑘𝜈𝜈𝑖𝑖
�⎯� and ⃗

𝑆𝑆𝑘𝑘𝜈𝜈𝑗𝑗
�⎯�, 𝐼𝐼1 is the further one 

of the distances between 𝑣𝑣𝐻𝐻, 𝑣𝑣𝑣𝑣 and 𝑠𝑠𝑘𝑘, while 𝐼𝐼2 is the other distance. 
𝜃𝜃𝑚𝑚 is the largest of the angles between 

𝑆𝑆𝑘𝑘𝜐𝜐𝑖𝑖,
�⎯�

𝑆𝑆𝑘𝑘𝜐𝜐𝑗𝑗
�⎯� and the normal 

vector 𝐧𝐧𝑘𝑘. In equation (1), 𝑤𝑤1 is used to indicate that if the angle 
between 

𝑆𝑆𝑘𝑘𝜈𝜈𝑖𝑖
�⎯�  and ⃗

𝑆𝑆𝑘𝑘𝜈𝜈𝑗𝑗
�⎯�  is beyond a certain range, the 

reconstruction will be negatively impacted. 𝑤𝑤2 indicates that the 
reconstruction contribution of the viewpoint to the sample point is 
negatively related to the distance between them. And cos(𝜃𝜃𝑚𝑚) 
indicates that the greater the angle between the viewpoint and the 
normal to the plane where the sample point is located, the less 
significant the reconstruction contribution from the viewpoint. The 
total reconstruction of the sample point 𝑠𝑠𝑘𝑘 in the viewpoint set 𝑉𝑉 is 

ℎ1(𝑠𝑠𝑘𝑘, 𝑉𝑉) 
= ∑ 𝛿𝛿(𝑠𝑠𝑘𝑘, 𝑣𝑣𝐻𝐻 , 𝐩𝐩𝐻𝐻)𝛿𝛿(𝑠𝑠𝑘𝑘, 𝑣𝑣𝑣𝑣 , 𝐩𝐩𝑣𝑣)𝑐𝑐(𝑠𝑠𝑘𝑘, 𝑣𝑣𝐻𝐻 , 𝑣𝑣𝑣𝑣) 

𝐻𝐻=1,…,|𝑉𝑉| 
𝑣𝑣=𝐻𝐻+1,…,|𝑉𝑉| 

 
Eq. 2 

where 𝛿𝛿 is the visibility function of viewpoint 𝑣𝑣𝐻𝐻 to sampling point 
𝑠𝑠𝑘𝑘 under direction 𝐩𝐩𝑣𝑣 𝛿𝛿(𝑠𝑠𝑘𝑘, 𝑣𝑣𝐻𝐻, 𝐩𝐩𝐻𝐻) = 0 when 𝑠𝑠𝑘𝑘 does not exist in 𝑣𝑣𝐻𝐻's 
field of view or the distance between the two is too large; otherwise 
𝛿𝛿(𝑠𝑠𝑘𝑘, 𝑣𝑣𝐻𝐻, 𝐩𝐩𝐻𝐻) = 0. 

 

Figure 3. Reconstruction model of the true 3D surface. The figure 
shows the profile view when viewpoints 𝑣𝑣𝐻𝐻 , 𝑣𝑣𝑣𝑣 are simultaneously 

observing the model surface sampling point 𝑠𝑠𝑘𝑘. 

B. Selection of Optimal View Direction 
To obtain an accurate true 3D surface reconstruction while 

also minimizing the number of viewpoints, reducing data 
acquisition time, and improving the modeling speed, it is 
essential to ensure that the viewpoints at each position observe 
in the optimal direction.  

The optimal viewing direction is determined by discretizing 
the viewpoint direction and selecting the direction that 
maximizes the reconstruction of the scene. It is critical at this 
stage to ensure the uniformity of discretization because uneven 
discretization can create a considerable gap between the chosen 
and optimal direction. 

Initially, we create a sphere of 1 m radius for each viewpoint 
using the Fibonacci [10] to generate a uniform point set on its 
surface. A vector set, 𝑃𝑃 = {𝐩𝐩1, 𝐩𝐩2, … , 𝐩𝐩𝑀𝑀}, is formed by 
computing the vectors from the center of the sphere to each point 
on its surface, as shown in Figure 4. Here, 𝑀𝑀 represents the total 
number of vectors. Given a set of viewpoints, 𝑉𝑉 = {𝑣𝑣0, 𝑣𝑣1, … , 
𝑣𝑣𝑠𝑠}, we determine the optimal viewing direction for each 
viewpoint v: 

𝐩𝐩∗ = arg max ℎ2(𝑆𝑆, 𝑉𝑉, 𝐩𝐩, 𝑣𝑣) 
𝐩𝐩∈𝑃𝑃 

Eq. 3 
where ℎ2(𝑆𝑆, 𝑉𝑉, 𝐩𝐩, 𝑣𝑣) is the reconstruction contribution of the 
viewpoint 𝑣𝑣 to the scene in the direction 𝐩𝐩: 

ℎ2(𝑆𝑆, 𝑉𝑉, 𝐩𝐩, 𝑣𝑣) 
= ∑ 𝛿𝛿(𝑠𝑠𝑘𝑘, 𝑣𝑣𝐻𝐻, 𝐩𝐩𝐻𝐻)𝛿𝛿(𝑠𝑠𝑘𝑘, 𝑣𝑣, 𝐩𝐩)𝑐𝑐(𝑠𝑠𝑘𝑘, 𝑣𝑣𝐻𝐻, 𝑣𝑣) 

𝐻𝐻=1,…,|𝑉𝑉| 
𝑘𝑘=1,…,|𝑆𝑆| 

 
Eq. 4  

where 𝐩𝐩𝐻𝐻 is the view direction of viewpoint 𝑣𝑣𝐻𝐻. 

 
Figure 4. Generate uniform discrete point set based on Fibonacci. 
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C. Cooperative Path Planning of Multi-UAV 
The trajectory planning is carried out in a way that multiple 

UAVs take turns to gradually extend their trajectories from their 
respective takeoff points. 

Firstly, we generate a uniform, high-density collection of 
candidate viewpoints in the free space of the scene (see Fig. 5). 
To ensure UAV flight safety, it is vital to maintain a safe 
distance 𝑓𝑓 between UAVs and surfaces or other obstacles. 
Furthermore, any candidate viewpoint located in free space, but 
whose minimum distance to surfaces or obstacles is less than 𝑓𝑓 , 
is deemed an invalid candidate viewpoint. 

Next, each UAV takes turns selecting the NBV, beginning at 
their respective takeoff points. The method of Wang et al. [11] 
is utilized to generate a continuous trajectory 𝐿𝐿(𝑡𝑡) (see Fig. 5), 
where 𝑡𝑡 represents time. The process then repeats by identifying 
the NBV and generating a continuous trajectory until the total 
reconstruction of the scene reaches the target value C. 

An evaluation function for the candidate viewpoint 𝑣𝑣 is: 

𝐻𝐻(𝐿𝐿, 𝑉𝑉′, 𝑆𝑆, 𝑣𝑣) = 𝑞𝑞3𝐻𝐻1(𝑉𝑉′, 𝑆𝑆, 𝑣𝑣) − 𝑞𝑞4𝐻𝐻2(𝐿𝐿, 𝑉𝑉′, 𝑣𝑣) Eq. 5 
where 𝐿𝐿 denotes the planned continuous trajectory and 𝑉𝑉′ is 
the set of selected viewpoints. 𝐻𝐻1 in Eq. (5) denotes the total 
contribution of all the viewpoints in 𝑉𝑉 ′  to the scene 
reconstruction together with 𝑣𝑣. 𝐻𝐻2 is the incremental energy 
consumption of the trajectory after adding 𝑣𝑣 as the trajectory end 
point, which is used to prevent the UAV from consuming too 
much unnecessary energy, which is detrimental to the 
reconstruction of the true 3D surface. 

 

Figure 5. The selection of the NBV. The blue point is the candidate 
viewpoint position, the gray point is the invalid safety viewpoint, the red 
point is the selected viewpoint, the NBV will be selected from the green 

point, and the red curve 𝐿𝐿(𝑡𝑡) is the planned trajectory. 

The NBV selection method involves extending each UAV a 
𝑟𝑟1 distance along the tangent direction of the trajectory endpoint. 
From there, using the KD-Tree nearest neighbor search, all 
suitable candidate viewpoints within the 𝑟𝑟2 distance and not 
chosen for selection are identified, and the viewpoint 
maximizing the function 𝐻𝐻 is chosen as the NBV (see Fig. 5). 

To ensure safety, we aim to maintain a suitable distance 
between UAVs during flight. Therefore, we update the 
evaluation function of the candidate viewpoint 𝑣𝑣 as follows: 

𝐻𝐻(𝐿𝐿, 𝑉𝑉′, 𝑆𝑆, 𝑣𝑣, 𝑠𝑠′) = 𝐻𝐻3(𝑉𝑉′, 𝑣𝑣)(𝑞𝑞3𝐻𝐻1(𝑉𝑉′, 𝑆𝑆, 𝑣𝑣) 
− 𝑞𝑞4 𝐻𝐻2 (𝐿𝐿, 𝑉𝑉′, 𝑣𝑣)) 

 Eq. 6 
 

                      𝐻𝐻3(𝑉𝑉′, 𝜐𝜐) = �1,𝐼𝐼∗, > 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
0,𝐼𝐼∗, ≤ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

    
Eq. 7 

Where 𝐼𝐼∗ is the maximum closest real-time distance from all 
other trajectories after 𝑣𝑣 has been added to the end of 𝑉𝑉′ and a 
new trajectory is planned, and 𝐼𝐼min is the safe distance between 
UAVs. 

III. RESULT 
We conducted real UAV flight and modeling experiments at 

the teaching building of Wuhan University and the Fangshiwan 
Bridge in Chibi. At these locations, we used three DJI Phantom 
4 RTKs to cooperatively capture images. The trajectories were 
planned by our method, and we built a precise 3D surface on the 
ground using DasEarth software. For comparison, we used the 
commercial software DJI-Pilot to plan a trajectory for vertical 
photography, captured images and built a 3D model on the 
ground using the same method. 

Fig. 6 shows the differences in details between the models 
built using different methods. In the trajectory planned by DJI-
Pilot, the direction of all viewpoints is vertical downward, and 
the distance between the front and rear viewpoints is the same, 
which makes it difficult to capture the elevation image of the 
scene. This problem is particularly obvious for the buildings 
with eaves and bridges with piers. However, our method avoids 
the above problems by observing the scene from multiple 
positions and angles. 

  

(a) Teaching building of Wuhan 
University (b) Fangshiwan Bridge in Chibi 

Figure 6. Detailed display of true 3D surfaces. The first row is a panorama, 
and the second and third rows are a detailed comparison between the method 

of this paper and the vertical photography method. The left is vertical 
photography, and the right is the method of this paper. 

In the experimental comparison of Wuhan University's 
teaching building in Figure 6(a), the traditional vertical 
photography model lacks numerous details under the eaves, 
while several areas of the model appear distorted, with fuzzy, 
unrecognizable text on its surface. In contrast, our method 
retains far more texture under the eaves, and the building's 
surface text is crystal clear. Comparably, traditional vertical 
photography in Figure 6(b) not only agglutinates to render a 
partial pier structure but also loses the texture of the fence 
surface. Our method, on the other hand, performs remarkably 
well regarding the comprehensiveness of the bridge piers and the 
richness of the surface texture. 
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IV. CONCLUSION 
A method for true 3D surface reconstruction using multi-

UAV cooperation is proposed in this paper. This method 
establishes a mathematical model of scene reconstruction based 
on MVS, which provides a reasonable evaluation of the 
contribution of viewpoints to the scene reconstruction. 
Furthermore, we use the Fibonacci sequence to quickly 
determine the optimal view direction. Multi- UAV path planning 
is done using a method where UAVs take turns in finding the 
NBV and gradually extending the path. Experiments conducted 
on Wuhan University's teaching building and Fangshiwan 
Bridge in Chibi demonstrate a marked improvement in the 
fineness and completeness of the true 3D surface when 
compared to traditional vertical photography. 
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Abstract— The boundaries of geographic study areas are mostly 
defined at an early stage of research, and rarely investigated 
further.  Yet statistical results are critically dependent on the 
extent of the study area and the way in which its boundaries are 
defined.  The dilemma is that a small study area may lack the 
number of features required for significant results, whereas a 
large study area may include sub-areas with different 
relationships between variables, so that the averaged values or 
trends obscure relationships.  Results for regional trends and 
mean azimuths of aspect are especially likely to be affected.  
Examples here are from mountain glaciation (cirques and glaciers), 
but the conclusions apply to many fields of physical geography and 
earth science. 

I.  INTRODUCTION 
The advancement of Geographic Information Systems (GIS) and 

the availability of high-resolution satellite imagery and digital 
elevation models (DEM) enable the analyses of a large population of 
geographic data for regional and global trends. However, such analysis 
may be affected by the Modifiable Areal Unit Problem (MAUP), 
which has been discussed extensively by human geographers and 
cartographers (Openshaw and Taylor, 1981; Evans, 1981; Goodchild, 
2011). Many MAUP-related studies concern the cases for which data 
are available or analysed, for example, the data collected for various 
administrative areal divisions. In comparison, few studies have been 
investigated similar issues in physical geography. Dark and Bram 
(2007) considered MAUP in physical geography, mainly in relation to 
scale effects in remote sensing (pixels) and in drainage tracing on 
DEMs (grid mesh) – both involving equal units. The impacts of data 
aggregation to varied shapes and sizes of geographic areas are seldom 
investigated. Here, we use three examples to demonstrate the impacts 
of analysing trends and directions in cirque datasets for different 
extents of investigated area. We suggest that results vary with the size, 
shape and uniformity of study area. 

II. EXAMPLE 2: GLACIATION OF THE CENTRAL HIMALAYAS 
Empty cirques were measured in an area of 224 x 134 km between 

79.6 and 82.1°E and 29.8 and 30.9°N in central Himalayas (Fig.1, best 
enlarged; Li et al., 2023).  This is a large and diverse area, with enough 
cirques to give highly significant statistical results. The cirques (Fig. 1) 
are in groups with different climates: the Nanda Devi, Byasrikh and 
Saipal Himal are exposed to the monsoon from the south, while the 
Gurla Mandhata (Naimon’anyi) and Chandi Himal mountains are in 
their rain shadow and therefore much drier and with a higher snowline, 

past and present. We first test the impact of data aggregation in different 
spatial divisions on regional easting and northing trends in cirque floor 
altitudes, then biases in cirque aspect (local asymmetry of glaciation). 
Both have been used to make inferences about former climates. 

The regressions in Table 1 show the relationship between cirque 
floor altitudes and UTM east and north coordinates (in km). Such trends 
are used to infer former glacier ELA trends related to precipitation and 
temperature. The data obey assumptions about uniform distribution of 
deviations. The regional trend across the central Himalayas is strong, 
rising mainly northward but also eastward. For the whole study area the 
rise is at 14 m/km toward an azimuth of 020°, compatible with the 5.8 
mm/km decline in precipitation toward 038° (from 1 km resolution data 
in WorldClim v2.1). 

We made a twofold split around approximately 81.2°E, through the 
pass at Baling La: this would be a West-East split except that in the 
south six cirques just west of this are closer to cirques in, and therefore 
are allocated to, the East region, so the terms Northwest and Southeast 
are used. This confirms the northward rise, especially in Southeast 
(from Saipal Himal to Chandi Himal). The eastward rise, however, is 
confined to Northwest. 

 
Fig. 1. The central Himalayas study area. Empty cirques are blue polygons. 

The cirques cluster in separate mountain ranges and further 
subdivisions can be made to define more compact, uniform areas 
separated by valleys and passes. The Northwest region is elongated and 
oriented WNW-ESE: it can be further split into three subsections by 
UTM eastings 336 km and 395 km.  The westmost is dominated by 
Nanda Devi, although the empty cirques are on lower peripheral 
mountains.  The central subsection includes Panch Chuli. The eastern 
is around Gunji, from UTM 395 km to 463 km and north of 3350 km.  

https://doi.org/10.5281/zenodo.7821243
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Regional trends for these three consistently show a northward rise 
greater than an eastward: floors are higher toward north of northeast. 
Two are highly significant with R2 of 42% and 56%, but the Nanda Devi 
subsection has only 32 empty cirques, giving completely insignificant 
results. 

TABLE 1. TWO-CONTROL REGRESSIONS PREDICTING 
CIRQUE FLOOR ALTITUDE (m) from UTM coordinates (in km) for 
the whole C. Himalayas area, for a twofold division into regions, and 
for the six subdivisions. The east and north coefficients give component 
gradients in m/km. p = 0.0868 for Nanda Devi, 0.0000 for all others. 

area east north R2 (%) rmse (m) n 
C. Himalayas 4.743 13.179 46.7 287 455 

Regions 
Northwest 6.410 14.315 30.6 273 173 
Southeast -1.955 16.851 65.8 241 282 

Subdivisions 
1. Nanda Devi 6.479 7.030 9.7 408 32 
2. Panch Chuli 12.698 28.023 55.6 229 86 

3. Gunji 15.956 19.771 42.1 156 55 
4. Saipal Himal 0.106 17.045 26.7 98 98 
5. G. Mandhata -6.871 20.096 84.6 146 100 
6. Chandi Him. 4.343 18.748 52.8 207 84 

 
The Southeast region divides naturally into three blocks or massifs. 

The eastmost is Chandi Himal, straddling the Nepal – Tibet border east 
of Labtse La: the north slope is the source of the Brahmaputra R. (Trak 
Tsangpo, Yarlung Tsangpo). Immediately west is Gurla Mandhata 
(Naimon’anyi), east of the town of Purang in Tibet but extending into 
Nepal. South of that, across the Changla La, is Saipal Himal with Jethi 
Bahurani, mainly in Nepal. The regressions are highly significant, with 
R2 between 27% and 85%. In all three subsections the northing 
coefficient is consistently strong, while the easting coefficient varies 
from negative to positive. This is where the monsoon rain shadow effect 
is strongest, with higher cirque floors in the dry north.  All trends are 
more northward than those in the Northwest region. The regional trends 
in cirque floor altitudes confirm that precipitation providing snowfall 
came from the south, in the past as today. 

Results for cirque aspect are used to infer the relative importance of 
shade, wind and other effects, moderated by topographic trends. For 
Central Himalayas these are less interesting. For the whole study area, 
vector mean aspect is 038.5° and strength is 7.5%, but p = 0.075 (using 
Rayleigh’s test for unimodal bias) and the 95% confidence limits are 
estimated as 341° to 096°, disappointingly broad. The two regions give 
consistent means (033.3° and 044.2°) but contrasting strengths (13.3% 
and 4.0%). Subsections have varied mean aspects of 000°, 168°, 003°, 
010°, 095° and 055°. It seems that the degree of symmetry is sufficiently 
high that this further subdivision produces capricious results, with local 
topography more effective than slope climates. The Gunji subsection, 
however, has a due north mean with a strength of 33.8%. 

In summary, the C. Himalayas cirque aspect distribution is 
symmetrical, with a weak tendency to favour northeast aspects in the 
Northwest region. This is somewhat different to that of the 1535 modern 
glaciers, downloaded from Randolph Glacier Inventory 6.0., with a 
vector mean of 017.8° and strength 24.2%. The 1175 glaciers smaller 
than 1 km2 likewise have mean 013.3°, strength 21.8%. Compared with 
038.5 for cirques, there is a (weak) hint of greater influence from 
westerly winds in the past. 

III EXAMPLE 2: GLACIATION OF THE EASTERN TIAN SHAN 
The E. Tian Shan study area (also from Li et al., 2023) extends 

over 134 km north-south and 302 km east-west, between 83.7-87.5°E 
and 42.9-44.2°N (Fig. 2).  As it is clearly in the west-wind belt, with 
precipitation from the west, we expect cirque floors and modern glacier 
ELAs to rise eastward as precipitation declines.  This decline, 
calculated from estimates of precipitation at roughly 1 km resolution 
from WorldClim v.2.1, is however at only 0.2 mm/km: much less than 
the 5.8 mm/km northward decline in the C. Himalayas.  The decline 

is toward 100°, i.e. close to eastward as expected. Median altitudes of 
modern glaciers rise at 1.0 m/km toward 065°.  

Cirque floor altitudes, however, rise southward: at 2.5 m/km 
toward 182° (Table 2). As the study area is elongated east-west, an 
initial threefold division into West, Centre and East is used. Significant 
results are produced in each region, with declines more northward than 
eastward in Centre and East.  In West, however, floor altitudes 
decline westward as expected and the northward coefficient is 
insignificant. 

 
Fig. 2. E. Tian Shan cirques: blue: empty cirques; green: subdivisions. (Best 

enlarged) 
As each of these regions was split by major valleys, and by a 

central area with large glaciers where cirques could not be measured, 
a further division into six subdivisions was defined, each having a 
more compact cluster of cirques. The results (Table 2) are varied. The 
Northwest and South-central subdivisions show no significant trends: 
in fact, the R2 values are negligible, even negative after adjustment for 
the degrees of freedom lost, and the rmse are close to the standard 
deviations of floor lowest altitudes. The other four subdivisions show 
northward declines (southward rises), much steeper than for the whole 
study area.  It is to be expected that small areas show steeper trends: 
in fact, the steepest is for Northeast, a small cluster of 24 cirques.  In 
each the eastward decline is much less than the northward, and in 
Southwest it is reversed and insignificant. 

 
TABLE 2. ANALYSES OF CIRQUE FLOOR ALTITUDE trends 

for the whole E. Tian Shan area, for three regions and for six 
subdivisions. Cirque floor altitude (m) is regressed on UTM eastings 
and northings (km): east and north coefficients are in m/km.  
Coefficients statistically insignificant at the 0.05 level are left blank. 

area east north R2 
(%) 

rmse p n 

E. Tian Shan  -2.517 10.5 220 0.0000 675 
Regions 

West 1.550  1.9 202 0.0139 343 
Centre -3.087 -5.399 29.4 236 0.0000 137 
East  -2.258 -7.230 27.3 186 0.0000 195 

Subdivisions  
1. Northwest   0.0 233 0.8035 146 
2. Southwest  -4.300 8.7 169 0.0001 188 
3. N-central -6.788 -16.014 30.3 234 0.0000 63 
4. S-central   0.0 230 0.6360 78 
5. Northeast -13.787 -44.087 25.9 192 0.0165 24 
6. Southeast -2.391 -10.272 26.2 180 0.0000 176 

 
In this case the more detailed division does not explain the lack of 

an eastward rise in cirque floor altitudes to match the reduced 
precipitation. It does, however, confirm the robustness of a southward 
rise. Although not apparent in the modern precipitation, the 
implication is that around the maxima of past glaciations precipitation 
(snow) was brought from more northerly sources than today: the plains 
of Xinjiang to the south were the more arid then as now.  The 
situation is complicated by the numerous cirques filled by modern 
glaciers, as these could not be measured.  

The steepest trend component is the northward decline of 44 m/km 
over 22 km in Northeast. This, however, is not supported by the 
regression of cirque floor altitudes on northing alone, which is 
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insignificant. We conclude that, despite the p value of 0.0165, the set 
of 24 cirques is too small to support a two-control regression.  The 
95% confidence interval on the -44 m/km gradient is from -73 to -15 
m/km.  On the other hand, the sets of 137 and 195 cirques in Centre 
and East sections, similarly tested, show a robust northward decline, 
as does the E. Tian Shan study area as a whole.  

The favoured direction in which glacial cirques face has also been 
used as evidence of palaeoclimate (Mîndrescu et al., 2010). The E. 
Tian Shan is in an arid, sunny region, so glaciers are likely to form and 
survive more on north-facing than on south-facing slopes. The WNW-
ESE orientation of the whole area, and of most component mountain 
ranges (Fig. 2), militates against east- and west-facing cirques.  The 
vector mean of the 675 empty cirques is 019.5°, north-northeast, which 
suggests a dominant shade effect moderated by some morning-
afternoon differences, probably in cloudiness. Division into three 
regions shows some reduction in the eastward component in the West 
and the East regions, but an insignificant (p = 0.129) directional bias 
in the 137 cirques of the Central section. 

The six-fold subdivision shows significant results only in two 
subdivisions, Southwest and Southeast, with greater vector strengths 
(22 and 28%) and a dominantly northward tendency (Table 3). For 
North-central p = 0.066 and 95% confidence limits are 352 and 094°. 
The other three subsections give completely insignificant results, to the 
extent that confidence limits cannot be calculated for Northwest and 
Northeast. Again there may be problems from exclusion of glacier-
filled cirques. 

 
TABLE 3. VECTOR ANALYSES OF CIRQUE ASPECTS in E. 

Tian Shan. Only significant results are shown: all p values are 0.000. 
Area Mean (°) Strength (%) Number 95% conf. 

(°) 
E. Tian Shan 019.5 14 675 358-041 

W. region 010.2 15 343 341-039 
E. region 008.5 22 195 342-034 

Southwest 002.7 28 188 341-024 
Southeast 013.2 22 176 346-041 
 
Assuming that almost all the 2997 modern glaciers have sources in 

cirques, the glacier mean aspect of 356.9° with a strength of 52.7% 
would shift the overall mean for cirques very close to north (taking 
only the 2677 glaciers smaller than 1 km2, the mean of 355.1° and 
strength of 53.0% produce the same result).  The conclusion is that, 
like modern glaciers, the glaciers that eroded E. Tian Shan cirques 
faced north, uninfluenced by wind or by morning: afternoon 
asymmetry. 

IV. EXAMPLE 3: CIRQUES OF THE ENGLISH LAKE DISTRICT 
Cirque aspects for the whole Lake District massif (Fig. 3) show a 

clear climatic signal, with shade favouring poleward aspects, and 
shelter from westerly winds favouring eastward (Evans and Cox, 1995).  
Results for 8 individual mountain ranges, separated by passes, show 
considerable variation (Table 4). The numbers of cirques in each are 
small, but this is not a random variation: it shows the effects of 
topographic lineation. The Western Fells are oriented east-west, with 
few possible east-facing sites: shade gives a north-facing dominance.  
The Central Fells, Coniston – Black Combe and the Eastern Fells 
(Helvellyn – Fairfield range) are elongated north-south, favouring 
east-facing cirque sites and providing few suitable north-facing sites: 
shelter from westerly winds encouraged glacier formation on east-
facing sites.  The Far Eastern Fells (High Street range) have north-
south and east-west ridges: they and the compact Sca Fell – Bow Fell 
massif come closest to the overall Lake District cirque vector mean.  
The Northwestern Fells are oriented northwest-southeast and give a 
NNE vector mean. The 95% confidence limits on vector means vary 
between ±15° and ±34° for the divisions, in comparison to ±10° for the 
whole Lake District. 

Implications of numbers of cases are even greater for correlations 
between morphometric variables. Whereas for the whole District all 
correlations of ±0.16 or stronger are significant at the p = 0.05 level, 
the number of significant correlations within each division is greatly 

reduced by the small numbers. For the two areas with 10 cirques each, 
correlations need to be over ±0.64; for that with 33 cirques, ±0.35.   

The eight mountain ranges are too small to define trends in floor 
altitude. Even for the whole Lake District, spatial trends are weak. 

 

 
TABLE 4. VECTOR MEAN AND STRENGTH OF 

HEADWALL ASPECTS in divisions (mountain ranges) of the English 
Lake District, ordered by vector mean.  All have Rayleigh’s p <0.001 
except for Central, where p = 0.001. 

Name (range) Mean (°) Strength (%) Number 
Western 015.3 62.2 33 

Northwestern 022.8 76.2 16 
Northern 036.4 82.1 10 

Sca Fell-Bow Fell 048.7 59.0 18 
Far Eastern 055.2 69.0 25 

Eastern 063.1 59.0 32 
Coniston-Black Combe 087.7 83.9 14 

Central 102.8 64.9 10 
LAKE DISTRICT 

TOTAL 049.3 60.2 158 

V. DISCUSSIONS AND CONCLUSIONS 
The regional trends for subdivisions, as well as for a complete 

study area, are varied and can be inconsistent. Analyses of subdivisions 
help test the robustness of generalizations and identify which 
subdivisions dominate the overall statistical results. For correlations, 
datasets here smaller than 25 tend to give excessively broad confidence 
intervals: more than 50 is desirable and 100 – 200 can give significant 
correlations for the weakest correlations likely to be of interest. For 
larger datasets the homogeneity of the study area should be considered. 

The regional trends derived from small areas can give misleading 
results. With large areas, analysing subdivisions tests the robustness of 
overall trends. The possibility of non-linear trends should be 
investigated although high-order polynomials are likely to be unstable 
and certainly should not be extrapolated. For directional statistics, as 
for cirque and glacier aspects, small datasets can give significant 
results if asymmetry is strong (i.e. high vector strengths, high 
consistency). These results may, however, relate to either topography 
or climate. High strengths can be produced if one side of a mountain 
range is studied, but that is of no climatic significance. If a drainage 
basin is analysed there will be a bias to the direction of the trunk stream. 
For datasets with more symmetry, mean directions may vary 
capriciously.  

Evans (2012) considered the importance of mountain ranges (as 
opposed to drainage basins or geometric outlines) as relevant study 
areas with meaningful boundaries. Compactness (spatial proximity), 
however, is also important for climatic interpretations: clustering 
needs to be respected and isolated cirques or glaciers should be 
allocated to the nearest cluster, i.e. compactness of study areas is 
important, as well as size and uniformity. Here we advocate multi-
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scale analysis in terms of study areas. Results can vary considerably 
even between adjacent areas. Analysis of nested study areas 
complicates interpretation; but it can increase confidence in results that 
are resilient. 
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Abstract—Terrain analysis methods are suitable to analysis 
datasets from a wide variety of statistical domains – not only 
digital elevation models. We applied a range of these to the total 
population dataset for Europe for the year 2011 to see the 
feasibility of identifying outliers, artefacts in the dataset as well as 
compare against more traditionally generated population derived 
datasets. The methods applied proved feasible and viable to 
identify corresponding regions for statistical purposes.  

I.  INTRODUCTION 
The Geomorphometry community applies their methods 

mainly on surfaces derived from elevation measurements [1]. 
However the author argues that the quantitative and qualitative 
methods can be applied to any surface derived from any 
measurement. In the traditional Geomorphometry sense it would 
be an elevation surface, however it could be any sparse or 
complete matrix covering a given area.  

Outside the Geomorphometry domain examples observed 
are human brain images recorded in 3D using Magnetic 
Resonance Tomography (MRT) [2], shell morphometry [3], 
charcoal morphometry [4] or dairy cow lameness [5] to name a 
few. The author observes on a non statistical sound sample from 
the research literature (n=20) that simple methods (e.g. like 
length/width) are often used to describe and analyse the 
respective aspect under consideration. We postulate that it seems 
the more advanced methods developed in the Geomorphometry 
community have not reached the main stream research as a tool 
of choice for specific research areas outside the direct 
Geomorphometry / environmental domain.  

We argue that the primary (e.g. based on elevation like focal 
mean), secondary (based on first derivative like slope) or tertiary 
(landform classification based on slope and curvature) methods 
applied can be used for a variety of purposes. Examples could 
be simply a hill shade for error detection, a landform 
classifications applied for generating feature objects in the 
feature space for future statistical aggregation or analysis. The 
objective of this abstract is to showcase the application of terrain 
analysis methods to a population distribution surface and to 
encourage the Geomorphometry community to reach out to 
other domains so the more “advanced” methods become part of 
the standard toolset for scientist. 

II. DATA & METHODS 

A. Dataset 

Every 10 years the Census is executed in the statistical world. 
A census is the periodic enumeration of a population containing 
quite often a variety of demographic information. In 2011 the 
European Statistical System (ESS) headed by Eurostat together 
with the European Forum for Geography and Statistics (EFGS) 
compiled a 1km total population (e.g. count of people) grid.  

 

Figure 11 Total Population distribution for 2011 

The data were aggregated from point observations or using a 
hybrid approach for 16 countries, while the rest of the 
submission from the Countries used a downscaling approach. 
Reporting data on a grid allows studying causes and effects of 
many socioeconomic and environmental phenomena.  

Additional advantages on reporting on a grid compared to a 
traditional reporting on statistical/administrative areas are:  

• grid cells all have the same size allowing for easy 
comparison; 

• grids are stable over time; 

• grids integrate easily with other scientific data (e.g. 
meteorological information); 
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• grid systems can be constructed hierarchically in 
terms of cell size thus matching the study area; and 

• grid cells can be assembled to form areas reflecting a 
specific purpose and study area (mountain regions, 
water catchments). 

The full dataset of total population for the year 2011 is shown 
in Figure 1. The dataset is available for the years 2011 and 2021 
at https://ec.europa.eu/eurostat/web/gisco/geodata/reference-
data/population-distribution-demography/geostat.  

A new dataset has been created for the reference year 2021 
containing preliminary and final data. 

B. Software 

The WhiteboxTools Software Suite, an open-source 
geospatial data analysis platform was used to perform a variety 
of analytical tests on the above mentioned dataset. 

III. RESULTS  

We deployed various terrain measures which are known to 
highlight inconsistencies in classical terrain analysis. No 
significant errors could be identified visually using hill shades 
as seen in Figure 2 and Figure 3. Similar results could be 
observed for Circular Variance of Aspects which highlighted 
clearly the stream network type distribution where people are 
living in Figure 4.  

 
Figure 12 Hypsometric tinted hill shade encompassing some of the 

BeneLux states. 

Profile curvature however showed single cells consistently 
distributed across the city centres plus around the city 
boundaries of unclear origin as seen in Figure 5 below. 
Negative profile curvatures could be attributed to unpopulated 
areas (e.g. graveyards, railway infrastructures) while positive 
curvatures are of unknown origin. The authors postulates from 
the metadata that these could be due to allocation of populations 
of specific nature e.g. foreign duty personal, homeless people. 
Edges of cities could also be observed with city centres as well. 
The identified cells can be used as input for further quality 
control as these could be indications of possible errors in the 
dataset compared to their surroundings. Further research need 

to be performed to see if any valuable information can be 
extracted –e.g. possible together with land use datasets.   

 
Figure 13 Hypsometric tinted hill shade encompassing some Eastern 

Europe countries 

 
Figure 14 Circular Variance of Aspect for some Eastern European 

Countries. 

The dataset is generated for each Member states separately, 
than merged into a pan-European dataset. One could expect to 
see edge artefacts across country boundaries due to different 
methodologies. However no effects were observed for the 2011 
dataset.  

Landform classification based on Geomorphons and k-
means clustering delivered similar results for populated 
areas/non populated areas as well for urban/regional 
classifications. 

IV. CONCLUSIONS 
The application of terrain analysis methods usually applied 

to Digital elevation models allowed a quantitative and 
qualitative assessment of the population grid from 2011 and the 
upcoming grid from the 2021 exercise. The same methods can 
be applied elsewhere in the world for the validation of the 
population grids. While execution times were exceptionally fast, 
some difficulties were encountered as the sparse data matrices 
(e.g. large areas set to Zero due to unpopulated areas) need to 
reasonably treated as edge effects were sometimes polluting the 
results.  

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
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Figure 15 Profile Curvature across Berlin and Potsdam (top) and Madrid 

(bottom) draped over an OSM background map. Note the location of the dark 
pixels in the city centers and the white areas surrounding the city boundaries.  
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Abstract— The current paradigm in geospatial data quality 
assessment is datacentric (internal quality) and the evaluation of 
the GDEMs does not escape this situation. Data quality should be 
evaluated as fitness for use, but this perspective is unapproachable. 
A new paradigm is proposed to overcome this situation by 
considering generic use cases that link geospatial data with its 
processing (algorithms). The new approach proposed by the 
functional quality supposes an intermediate situation between the 
user’s and producer’s perspectives (external and internal quality). 
This paper defines the functional quality, explains the need for this 
new perspective and shows an example. 

I.  INTRODUCTION  
The concept of quality is close to everyone, it is used in 

colloquial language and is universally understood and intuitively 
accepted. In general, it can be said that a well-done work has 
quality. The term quality is defined in [1] as the degree to which 
a set of inherent characteristics of an object fulfils requirements. 
This definition clarifies that quality does not have to be limited 
to a single property of the object under consideration, but that 
several factors may come into play to define quality. On the 
other hand, what is inherent is what is proper or inseparable from 
things, and it is worth clarifying that here are factors that are 
more evident, or explicit, than others that have a more implicit 
character. Another interesting aspect of this definition is the one 
that quality refers to the fulfillment of requirements.  

In this way, it is interesting to define what fitness for use is. 
The American Association for Quality glossary on quality [2] 
tells us that fitness for purpose is a «term sometimes used to 
define the term "quality", to indicate the degree to which a 
product or service meets the requirements for its intended use». 
Thus, we consider that term “fitness for use” implies having: i) 
a well-determined purpose of use and ii) the ability to evaluate 
the performance level. In relation to the first component, use 
cases can be considered. Basically, a use case is nothing more 
than the description of an action or process with a certain level 
of formalization (e.g., using Unified Modeling Language 
diagrams, or any other language). Focused on a specific user 
requirement, the documentation of a use case must include the 
actors, actions, inputs, outputs and decisions necessary to 
achieve the proposed goal. The fitness for use approach 
supposes the loss of the most transcendent, abstract and general 
vision of quality to focus on specific use cases. For example, in 
the automobile sector, there are many possible users, uses and 
ways of driving a specific vehicle model. Considering that for a 
user the fuel consumption is a relevant aspect of the quality of a 

car model, and that it is impossible to adequately inform for all 
possible situations, standards, such as the New European 
Driving Cycle (NEDC) [3], and more recently the World 
Harmonized Light-duty Vehicle Test Procedure (WLTP) [4], 
have been adopted for dealing in this complex scenario. In the 
latter, a driving dynamic is adopted that tries to reproduce much 
better how people drive in the real world [5]. Closer to the 
geospatial world, there is experience in performing functional 
tests on web services (semantic services [6], geospatial services 
[7] such as WFS, WCS, etc.). And, more generally, the OASIS 
model [8] for web services establishes several quality 
dimensions on functional aspects. 

For all these reasons, we consider that proposing the 
perspective of functional quality applied to the case of geospatial 
data is in line with what is already a reality in more advanced 
fields. 

The objective of this paper is to develop a new perspective 
of the quality of geospatial data, in which we are guided by the 
example previously exposed for the automobile sector. We 
propose that quality be defined and evaluated in specific use 
cases, which means linking data and processes (algorithms). In 
this way we get much better approximation to the fitness for use. 
We call this new perspective functional quality.  

The structure of the paper is as follows: Section 2 defines 
functional quality in more detail. Section III shows an 
application example for the use case of basin delineation. Finally, 
Section IV presents a brief conclusion. 

II. DEFINING THE FUNCTIONAL QUALITY  
This paper proposes the adoption of a new level of analysis 

and information on the quality of geospatial data, which we call 
functional quality. We describe quality with the adjective 
functional since we propose evaluate how well the data 
"works/performs" in specific use cases.  

Since geospatial data is used in processes, this new level of 
quality assessment and reporting picks up on this, linking data 
with algorithms, or chains of processes, to more fully consider 
the quality of outputs, which most directly affects to users. Thus, 
we define functional quality as the consistency, against a 
reference, of the results generated by a given algorithm (process) 
when applied to a given geospatial data set (e.g., a given digital 
elevation model —DEM— dataset that is used for the 
determination of a hydrographic network). 

https://doi.org/10.5281/zenodo.7861223
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We understand the functional quality as a new perspective 
that can be complex and must be defined by various indices 
(quality measures). For example, for the case of a drainage 
network determined on a DEM dataset and a given algorithm, 
some aspects that can help to inform about the functional quality 
of the DEM are: displacements of the resulting network, 
completeness of the obtained network, topological problems 
present in the network, etc. That is to say, aspects that may be of 
interest to a user who will use that drainage network in their 
production processes or decision making. 

Therefore, functional quality approximates the “fitness for 
use”, but focused on a use case defined as generic and not 
considering particular requirements of some users or others (for 
example, for an engineering project, resolution requirements are 
different for the phases of feasibility study, preliminary design 
and project). With all this, a certain component of particularity 
is eliminated, as occurs when applying the NEDC and WLTP 
methods for assessing the fuel consumption in specific driving 
scenarios. 

So, functional quality can be considered as the middle layer 
of a three-layer system, each of which brings us closer to quality 
from a different perspective: internal quality (the data-centric 
traditional producer’s perspective), functional (use-case-centric 
perspective) and external quality (fitness for use perspective). In 
this way, a more general approach to use cases can be made 
without going into the problem of countless users and specific 
conditions of their applications, which supposes a context that is 
too rich and broad to be addressed. Basically, we are following 
the same scheme that has been mentioned previously for the case 
of the automobile sector with respect to the information on 
vehicle consumption. 

III.  EXAMPLE  
The first step in addressing functional quality is to define the 

use case to be considered. We call “base use case” the use case 
without being linked to a specific algorithm or process, and 
“specified use case” the base use case when it is linked to an 
algorithm or processing. In this example we consider a “basin 
delineation” as the base use case, which is a use case of some 
relevance [9]. The definition of the use case should be as detailed 
as possible. In our case, the proposal made by [10] will be 
followed. Table 1 presents the use case definition schema for 
this example. Key aspects are: i) the explanation of the intended 
use of the data, this explanation must convey an interpretative 
context of high value for the base use case, ii) the requirements 
that are established on the data from a functional perspective, 
they are called key performance indicators (KPI), in this 
example we consider three KPI based on five measures, iii) the 
algorithm that is considered, in such a way that the evaluation is 
linked to that algorithm (specified use case). We want to indicate 
that the KPIs are the basis of the "functional" evaluation. 
Therefore, KPIs must be carefully proposed by users or user 
communities. The international standard ISO 19157 [11] 
proposes several data quality measures that can be considered 

(e.g. six measures for the absolute or external accuracy that can 
be applied to 1D, 2D and 3D data, and nine measures that are 
specific for the vertical positional uncertainties). These 
measures are well defined since the ISO 19157 standard 
establishes a schema with twelve elements that characterize 
them (name, definition, description, basic measurement, etc., see 
annex D "List of standardized data quality measures" of ISO 
19157 for details), however they present an excessively data-
centric perspective typical of official geospatial data producers. 

In addition to the KPIs, you also need a model that allows 
you to integrate the KPI’s individual values into a single final or 
global result (a single value or an accept/reject). This model may 
require considerable effort from user communities to agree. The 
international standard ISO 19157 offers some models that can 
serve as an example when generating a value for the global result 
of the assessment (e.g. 100% pass/fail, weighted pass/fail 
maximum/minimum value, see annex J "Aggregation od data 
quality results" of ISO 19157 for details). In this case, based on 
user surveys, a model with five requirements has been 
established (see Table 1). The five KPIs and the proposed model 
aim to ensure three aspects (“facts” in Table 1): adequate 
positional accuracy, adequate statistics of the areas, and 
adequate spatial overlapping of the areas. This model is 
equivalent to the “100% pass/fail” insofar as the five KPIs are 
required to have acceptable values simultaneously. 

TABLE I.  EXAMPLE OF USE CASE DEFINITION 

Use case element Explanation 

Use case name Determination of a hydrographic basin. 

Abstract The user wishes to generate the planimetric delineation 
of a basin or set of (sub-)basins from a DEM data set. 

Algorithm Multiple flow direction. 

Use 
The result of the processing is a polygonal enclosure(s) 
that is(are) used to establish areas of interest for further 
spatial analysis. 

Requirements 
Fidelity of the results: 

Facts: Measures: 

 
2D Positional 
accuracy of 
boundaries 

• Buffer width (95%) (m) 

 Accuracy of area 
estimation  

• Limited bias in the area 
estimation (ha) 

• Maximum standard 
deviation (ha) 

 Level of area 
overlay 

• Minimum mean value of 
overlay agreement (%) 

• Maximum standard 
deviation of the mean 
overlay agreement (%) 

 

Functional quality can be used to compare data (a product vs. 
a reference data set), but also to compare algorithms (results of 
a given algorithm vs. the results of a reference algorithm) using 
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the same data set. The latter case is the one that will be presented 
here. 

For the example case, we will consider the comparison of the 
results of two algorithms for watershed delineation (D8 [12] and 
multiple flow direction [13]) on the same data set. The data set 
correspond to the SRTM v3 [14] of a small area (≈ 13 Km2) in 
the surroundings of Allo (Navarra, Spain) (Fig. 1). This figure 
shows the data considered as reference (in blue) and the “product” 
(in red). The mean watershed size is 0.64 km2.  

In this example the data will be considered to have adequate 
functional quality if: 

1º) the positional accuracy of the boundaries of the basins is less 
than 50 m in 95% of the cases AND 

2º) the bias in determining the area is less than 1000 m2 AND 

3º) the standard deviation of the estimation of the areas is less 
than 2,5 hectares AND 

4º) the degree of agreement in the overlapping of the areas is 
greater than 95% AND 

5º) the standard deviation of the average degree of overlap is less 
than 1%. 

It should be noted that the values established for the KPIs are 
dependent on the scale/resolution of the geospatial data but also 
on the set of individuals of interest itself (the watersheds in this 
case). It should be noted that although the determination of the 
KPIs and their associated measures is complex, the 
determination of the values to be considered for each measure is 
no less complex. This is a process in which the voice of the user 
(model and KPIs) must be considered, but also the voice of the 
processes (what can be obtained from imperfect data, algorithms 
and models). 

Going back to the example, the results for the measures 
considered is {40 m, 990 m, 2.29 ha, 95.54 %, 0.033 %} 
respectively, therefore, it can be considered that the result of the 
analyzed algorithm adequately meet the required functional 
quality. 

 

Figure 6.  Delineation of basins used in the example  

IV. CONCLUSION  
The main contribution of this work is conceptual and has 

focused on justifying the need to introduce a new level of quality 
assessment (functional quality), which is more informative for 
users but, at the same time, can be applied by producers. Based 
on what is already being done in other fields (e.g., vehicles and 
web services), we consider that adopting the perspective of 
functional quality is a natural evolution for the case of data and 
its processes.  

This new level of evaluation is intermediate between quality, 
as it is currently understood and materialized by producers, and 
quality in the sense of “fitness for use”. Functional quality links 
geospatial data with its processes, so it offers a way that is much 
closer to users and can help producers to be more attentive to 
user’s needs.  

There are many use cases that can be considered for GDEM 
data. In this paper, a fairly simple but usual use case has been 
presented as an example with the aim of facilitating the 
understanding of the new evaluation paradigm that is proposed. 
The most critical issues of this new framework are the need to 
formalize the use cases, establish the KPIs and the model to 
integrate the KPI's individual values into a single final or global 
result (a single value or an accept/reject). We believe that all of 
this should be the result of consensus among users, and that 
standards or guides should be established for their homogeneous 
application. 
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Abstract— Global digital elevation models are well suited for many 
applications and therefore their quality needs to be evaluated. 
However, the evaluation of this type of data is expensive and 
efforts are often repeated. In addition, in certain global 
applications, the possibility of accessing local control data is 
missing. This paper proposes the design of a collaborative data 
infrastructure for the control of digital elevation models. 
Specifically, the data model related to the control part is 
established and, in addition, it must support the collaborative web 
application. The data may be of point type (e.g. points surveyed by 
Global Navigation Satellite Systems), transect (e.g. altimetric 
profiles or paths), or surface (e.g. a high density and accuracy 
patches). It is a flexible design that incorporates metadata for 
subsequent filtering. Along with the spatial and temporal aspects 
of the data, metadata attributes related to accuracy, 
instrumentation, operator, etc., are also included. All of these 
attributes must allow content to be properly filtered to provide 
adequate reference data for Digital Terrain Models (DTM) and 
Digital Surface Models (DSM) assessments. 

I.  INTRODUCTION) 
Digital Elevation Models (DEMs) are a typology of 

geospatial data product included in the Global Fundamental 
Geospatial Data Themes defined by the United Nations 
Committee of Experts for Global Geospatial Information 
Management [1]. DEMs have a significant role on numerous 
sustainable development goals of the United Nations (e.g. the 1st, 
2nd, 3rd, 6th, 7th, 11th, 13th, 14th and 15th goals). For this reason, the 
quality of the DEM data is relevant and its control is required, 
especially at this time in which numerous applications are being 
developed on the so-called Global Digital Elevation Models 
(GDEM). Quality in DEM is mostly understood as an 
assessment of positional accuracy [2, 3], that is vertical accuracy; 
and the most critical aspect is usually having adequate reference 
data to be able to carry out the subsequent statistical analysis (e.g. 

an estimate of error), with sufficient statistical 
representativeness. 

Traditionally, in the case of geodetic and topographic 
surveys, the existing infrastructures, both in its physical part 
(monumentalized), and in its documental part, allowed the 
development of new and interoperable surveys with those 
already existing. Our idea is to offer an infrastructure that 
minimizes the cost of evaluating the accuracy of new GDEMs. 
This infrastructure will allow the reuse of existing evaluation 
work. In addition, it will allow collaboration between users and 
producers. 

The objective of this document is to present the design of the 
proposed data infrastructure, justify some of the decisions made 
and explain its synergy between this infrastructure and the 
DEMIX project (Digital Elevation Model Intercomparison 
eXperiment). 

II. GDEM ASSESSMENT, CONTROL INFRASTRUCTURES AND 
THE DEMIX PROJECT 

A. Control infrastructures  
Geospatial data refers to a changing reality such as the real 

world. For this reason, there is a need to update the geospatial 
data of a specific area, more frequently when greater dynamics 
of that area (e.g., new urban developments, etc.). So that, it is 
usual for the same area to have products from different times, 
depending on the update strategies adopted by the data 
producers. 

Some elements of geospatial data quality (in the sense of 
ISO 19157) [4] require that quality be assessed against a 
reference, usually ground-truthing data. An adequate reference 
requires independence with respect to the data to be evaluated 
and also greater accuracy. This makes generating the references 
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costly and therefore it is usual to work with processes based on 
statistical sampling. It is also common to try to reuse reference 
data from previous evaluation processes, as long as they remain 
valid. This is the main justification for a control data 
infrastructure. There are several examples of geospatial data 
producers that have created their own control infrastructures 
(e.g. the Lucas facility by the European Environment Agency) 
[5]. In the case of GDEM, Bęcek et al. 2022 [6] proposed the 
Global Elevation Data Testing Facility (GEDTF). It is defined 
as “a database of anthropogenic and natural features found 
around the world that are flat (or nearly flat) and large (longer 
than 500m and wider than 15m)” 
(https://zasobynauki.pl/zasoby/global-elevation-data-testing-
facility-gedtf,49859/ ) 

B. GDEM assessment  
GDEMs are commonly used for global studies by 

international user communities or organization. GDEMs are a 
type of data widely used today due to the interest in the analysis 
of various processes on a global scale (e.g. climate change). As 
indicated by [7] there is a need for a high-accuracy, open-access 
GDEMs. For this reason, there exists a great interest in knowing 
the quality of the various offered products, many of them 
available under a free and open data policy (e.g., NASADEM 
1”, SRTM 3” and 1”, ASTER-GDEM v3, AW3D30 1”, 
TanDEM-X90, Copernicus DEM 3” and 1”, MERIT). Some 
analyses are: 
• Iwao et al. [8] compared elevation values of GTOPO30 and 

SRTM 30 arc second datasets globally at degree 
confluences by means of GNSS data. 

• Xinchuan et al. [9] used five GDEMs (ASTER GDEM2, 
SRTM V4.1, GMTED2010, EarthEnv-DEM90, and 
GTOPO30) and compare them with ICESat/GLA14 data to 
assess the accuracy.  

• Acharya el at. [10] develop a comparison of the AW3D30 
(Advanced Land Observing Satellite World 3D 30m) and 
SRTM30 (Shuttle Radar Topography Mission Global 30m) 
using as reference a 30m resampled LiDAR DEM. 

• Uuemaa et al. [11] examined the accuracy of six freely 
available global DEMs (ASTER, AW3D30, MERIT, 
TanDEM-X, SRTM, and NASADEM) in four geographic 
regions with different topographic and land use conditions. 
They used local high-precision LiDAR and Pleiades-1A 
data as reference. 

• Geoffroy and Guth [12] used high-resolution ICESat-2 
point clouds to evaluate several GDEM (SRTM (V3), 
ASTER GDEM and ALOS World 3D AW3D30). 

and many others. 
A general conclusion of these works is the lack of a common 

analysis method, and the lack of a common reference data set for 
the GDEM quality assessments. 

C. The DEMIX project and the control infrastructures  
The DEMIX project focuses on being able to suggest the 

best GDEM for a use case in a given area, and for this, reference 
data on a global scale is required. To date, the DEMIX project 
has focused on the development of definitions, use cases, the 
proposal of functional quality measures and the development of 
a statistical method for decision making based on qualitative 
and quantitative judgments. 

According to [13], developing a test protocol and several 
comparison criteria is proposed to compare different GDEMs. 
In the comparison they will use a number of independent test 
sites (tiles), where in each of them must exist a reference dataset, 
deemed to be of higher accuracy. The reference data of a tile 
has an owner (“tile-owner”). It is desired to find a number of 
tiles, spread over the world that are representative of varying 
landforms and landscapes. The idea is to declare that a 
particular global DEM is better than the others, there is no 
reason to expect that it will be better in all the tiles. 

Based on the evaluations for each GDEM and the typologies 
of the tiles, DEMIX proposes to create a web tool that guides 
the users of the GDEM so that they themselves choose the 
product (e.g., STRM, ASTER, TanDEM-X90, etc.) that 
performs best in areas equivalent to those of their interest. 

We consider that there is a high degree of synergy and 
complementarity between the DEMIX project and the proposal 
of a control infrastructure. Having a collaborative and global 
control infrastructure will make it possible to have control data 
on a global scale, such as the GDEMs. This will allow for more 
comprehensive assessments. In addition, it will allow 
researchers to access the same set of reference data, and this 
will allow more interoperable results between different 
evaluation analyses. Having control data on a global scale in an 
open infrastructure does not limit the possible measures to be 
applied, it is only necessary to include the appropriate types of 
reference data for each use case (for example, altimetric points 
for vertical accuracy control and a drainage network for an 
evaluation on this use case). 

III. THE CONTROL DATA INFRASTRUCTURE FOR GDEMS 

A. Control infrastructures  
The control-data infrastructure for DEM is a facility 

developed under the following criteria: 
• Data Openness. Legal and technical openness by means of 

open data licenses and non-proprietary formats and access.   
• Open contribution and cooperation. The infrastructure is 

open to receiving contributions from any interested party, 
with the only restriction of accepting the opening of the 
data and the technical supervision of their contributions. 

• Web application. It is a web-accessible application. 

https://zasobynauki.pl/zasoby/global-elevation-data-testing-facility-gedtf,49859/
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The goal of this infrastructure is to provide reference data 
sets (points, profiles, surfaces and other data types) that can be 
used to evaluate the quality of DTMs (digital terrain models) 
and DSMs (digital surface models) (see [12] for a definition on 
DTM and DSM). The basic elements constituting the 
infrastructure are a database that houses the reference data and 
all the relevant metadata around them (e.g. authorship, accuracy, 
dates, methods, etc.), and the Web application that offers the 
service and interfaces with administrators and users. To achieve 
this purpose, the following bases are required: 
• Data with adequate characteristics to serve as a reference 

data in quality assessment processes. 
• Metadata that allows knowing key aspects of the reference 

data and being able to filter them based on their 
characteristics and user needs. 

• Web system for collaboration and consultation. 
• A data model that allows managing data, metadata, 

collaborations and access. 
Our vision about the use of the infrastructure is as follows: 

this infrastructure should allow the user to filter their content 
considering time (e.g., date range), space (e.g., introducing a 
geographic window), type of application (e.g., DTM or DSM), 
resolution of the data to be controlled (e.g., 1", 3", etc.), and any 
other criteria that is considered relevant for a quality assessment 
and that is present in the metadata. 

The database that has been designed contains two branches 
of interest (Figure 1): 
• The branch of the responsible party (red branch of Figure 

1). This branch is intended to store data relevant to those 
users who provide the control data (control-data owners) 
(e.g. name, address, phone, etc.). 

• The branch of the control data set (blue branch of Figure 
1). This branch is intended to store the control data in a 
structured way and with its appropriate metadata. 

The participation of an individual or organization is done by 
means of one or several control datasets (Ctr_DataSet). Each 
control dataset must contain at least one control entity 
(Ctr_Entity). The control entities can be of the type point 
(Points), profile (Profiles) or surface (Surfaces) (Figure 2). 
Finally, the coordinates of the control structures are stored as 
triplets of X, Y and Z values (Coordinates). The control data 
sets, the control entities, the points, profiles and coordinates, are 
objects that have properties (e.g., minimum bounding box, date, 
accuracy, CRS, etc.), which allow the appropriate selection of 
the control data.  

From the users' perspective, the main use cases considered 
are the following:  
• Users (all): Register/deregister in the system.  
• Users providing control data: Create control data sets, 

along with their metadata.  

• Users providing control data: Upload control entities that 
are included in control data sets, along with their metadata.  

• Data infrastructure users: Perform queries.  
• Data infrastructure users: Download control data to 

perform their analysis. 
Currently, the database for the infrastructure is in the final 

design phase. Tests are being carried out with the data 
corresponding to the geodetic network of Spain (points), road 
axes (3D profiles) and patches (surfaces) from surveys using 
laser techniques (aerial and terrestrial). It is now being tested in 
single user mode. The phase is scheduled to be completed by 
the end of Summer 2023. It is planned to develop a user 
management system with adequate capabilities (e.g. 
registration, log, etc.). It is scheduled to put the system into 
production at the end of 2023. All the development is done with 
open software tools and the database manager is PostGIS. 

 

Figure 1.  Database model schema, main object classes of the two branches: 
the responsible of the data (in red) and the data for the DEM control (in blue).  
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Figure 2.  Example of control entities: geodetic monument, football pitch, 
parking zone, flat roof, pitched roof, airfield runway and a road 

We consider that there is a high degree of synergy and 
complementarity between the DEMIX project and our proposal. 

The DEMIX project focuses on being able to suggest the 
best DEM for a use case in a given area, and for this, reference 
data on a global scale is required. To date, the DEMIX project 
has focused on the development of definitions, use cases, the 
proposal of functional quality measures, and the development 
of a statistical method for decision making based on qualitative 
and quantitative judgments. 

With a global perspective, our proposed infrastructure 
allows hosting control elements of a very diverse nature in a 
structured and use-oriented manner. Thanks to the considered 
metadata, it will be possible to filter control elements 
appropriate to the accuracy and space-time requirements of the 
DEM (or DSM) data to be controlled. For all these reasons, our 
infrastructure allows hosting the control tiles considered in the 
DEMIX project.  

The development of the infrastructure is mature but not 
closed, which allows some modifications to be included in the 
data model, such that they could be relevant for the DEMIX 
project. The infrastructure is currently in the testing phase 
regarding the design of the database and the web service 
component is starting. It is expected to be operational by the 
beginning of 2024. 
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Abstract— The DEMIX ‘wine contest’ is a novel framework for a 
practical approach to inter-compare a range of candidate digital 
elevation models (DEMs) based on pre-defined criteria and a 
statistically sound ranking approach, known as the randomized 
complete block design (RCBD). The application of the `wine 
contest' to six 1 arc-second global DEMs, considering a wide set of 
study sites, covering different morphological and landcover 
settings, highlights the potentialities of the approach. Results 
confirmed significant superiority of COPDEM and FABDEM over 
ALOS AW3D30, NASADEM, SRTM and ASTER GDEM. 

I.  INTRODUCTION  
Over the past two decades, several Earth observation 

missions have resulted in finer than 100m resolution global 
Digital Elevation Models (DEMs), most of which are shared 
freely and openly worldwide. 

At this time, at least six different global medium resolution 
(i.e., 10-100m) DEMs have been produced using a variety of 
techniques. We expect more to come in the near future as new 
technologies and methods are developed. However, most users 
do not have the resources and expertise to perform an in-depth 
comparison of different DEMs. Therefore, expert advice that 
provides information pertinent to the user's need will benefit the 
community to identify the most appropriate dataset. 

As a major step towards this goal, this paper presents the 
wine contest, a novel and flexible tool to provide geospatial data 
users with a practical approach to inter-compare a set of 
candidate global DEMs based on pre-defined criteria and a 
statistically sound ranking approach. The framework provides 
the wider geospatial community tailored recommendations 
regarding available DEM products that are not limited to one 
domain, geographic area, or landscape type. The method is 
flexible and customizable in relation to the specific needs and 
requirements of users in their particular application. 

II. METHODS  
Ranking a collection of wines or a set of DEMs from a given 

set of candidates leads to a mathematically similar problem. The 
method can also be applied to comparisons of other geospatial 
products and is in no way limited to ranking of global DEMs. 

In a real wine contest, each expert or connoisseur judges the 
wine on its own merits which can be based on a set of criteria 

such as taste, colour, bouquet, price, etc. The judge(s) evaluate 
and build an opinion based on their experience and taste without 
knowing the origins of the wine. The overall winner is thus 
declared after considering all the opinions, with equal weight. 

For the inter-comparison of global DEMs, it is necessary to 
produce the contest ranking based on evaluations of the DEMs 
against high accuracy data (high-resolution lidar DEMs, 
geodetic benchmarks etc). The evaluations can be qualitative 
(subjective based on the opinion of an expert) or quantitative, 
based on some objective method that can produce a numerical 
result, which is amenable to be sorted. 

The DEMIX wine contest is prepared as an evaluations table 
of k columns and N rows recording the assessment outcomes for 
each of the candidate DEMs and an opinions table, which 
translates the evaluations table to ranked opinions. A 
hypothetical example of these tables is presented in Figure 1. 

Criteria that in general cannot be ranked, i.e., whose results 
cannot be interpreted in the sense of better or worse, are not 
applicable to the wine contest. Ties, individual results which are 
considered equally good (or equally bad), can be considered by 
applying the mid-rank procedure. 

Tolerances should account for measurement uncertainty to 
identify minor differences in the evaluations table that will have 
an impact in the opinions table but are not really different. For 
example, many of the global DEMs only record elevation to the 
nearest meter and thus differences of centimeters or even 
decimeters would not record a significant difference among 
them. 

The null hypothesis in the context of this ‘wine contest’ 
means that there is no difference among the DEMs, and a 
consensus based on the opinions cannot be achieved. However, 
if the null hypothesis is rejected, then the contest ranking is not 
based on chance (given a chosen confidence level) and some 
conclusions can be obtained. 

A statistical confidence must be associated to the final wine 
contest rankings because it is imperative that the outcomes 
produced are not due entirely to chance (as might happen if the 
opinions table rankings are taken naively). 

One of the strengths of the wine contest is that both 
quantitative and qualitative evaluations can be integrated into 
the contest. Therefore, a non-parametric test should be used  
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Figure 1. A wine contest example applied to the inter-comparison of DEMs - the evaluations table (left side) records the assessment outcomes 
for each of the candidate DEMs. The opinions table (right side) translates the evaluations table to ranked opinions. 

which can operate over both types of rank results. The chosen 
non-parametric test for the wine contest is the Friedman Test [1], 
because among the non- parametric choices at hand, it is the best 
alternative for minimizing the risk of paradoxical results. 

The general Friedman's statistic χr, is presented in Eq.1, valid 
with or without ties (N=number of opinions/assessments, 
k=number of DEMs). 

 

Eq. 1 

 

To apply the Friedman Test the entries in the opinions table 
(Fig.1) are denoted as the elements rij, and the final row presents 
the column sums by Rj. The remaining values to compute the 
Friedman statistic (χr) can be extracted from the same table: with 
CF=96, sum of r2=111.5, and sum of R2=868.5, then χr =12.968. 

For a given k, N and confidence level alpha, the Friedman's 
statistic value χ2 is compared to the critical value; if χr

2 is larger, 
the null hypothesis is rejected, and the conclusion is that we 
cannot accept that the DEMs are equivalent. Since we are willing 
to accept ties, the standard critical values tables from the 
Friedman Test are not suitable. From the table for k=3 provided 
by [2], and at the 95% confidence level, the row N=8 offers a 
critical value to compare of χcrit=5.793. Compared to the χr result 
of 12.968 which is larger, one should reject the null hypothesis 
that the opinions table entries are purely at random, implying 
that the DEMs are equivalent. 

The null hypothesis has been rejected based on the Friedman 
Test, so there are statistically significant differences among the 
set of DEMs under consideration. The lower the values of Rj, the 
better, but it is still necessary to assess whether the difference 
between the pairs of ranked candidate DEMs are statistically 
significant, or otherwise conclude that the pair is tied. The 
process is denoted as post-hoc analysis and there exist different 
options to carry out such an analysis. In this case and following 
[3], we propose to use the test by [4] applying the Bonferroni 
correction. 

A pair of DEMs is considered significantly different if  

Eq. 2 

In this example, the critical value for the post-hoc analysis will 
be 4.005. To conclude whether there is a significant difference 
between ranked pairs the absolute difference between Ri and Rj 
should be greater than 4.005: 

DEM3 vs. DEM2: abs(24.0-10.5) = 13.5 → significant 

DEM3 vs. DEM1: abs(24.0-13.5) = 10.5 → significant 

DEM1 vs. DEM2: abs(13.5-10.5) = 3.0 → not significant 

From a DEM user perspective, the above wine contest results 
say that for the given assessment, either DEM1 or DEM2 could 
be equally recommended because there is no significant 
difference between them and they both ranked significantly 
better than DEM3 in the overall comparison. The conclusion is 
valid at the 95% confidence level. 

III. GLOBAL DEMS COMPARISON 
The wine contest approach was applied for the comparison 

of the six global DEMs that are available at a spatial resolution 
of 1” (ALOS AW3D30, ASTER GDEM, COPDEM, FABDEM, 

NASADEM, SRTM) using a variety of criteria. The method 
is based on four overall steps: 

Step 1: Obtain high quality reference elevation data (data 
with significantly higher accuracy elevation measures and much 
smaller sampling spacing than the DEMs to be tested); 

Step 2: Prepare reference DEMs from the reference data. If 
required, adjust the vertical datum of reference DEMs; 

Step 3: Evaluate the reference and global DEM data, for 
every test area and for every criterion to produce the evaluations 
table (Fig.2); 

Step 4: Rank the global DEMs according to the wine contest 
rules to produce the opinions table. Produce final rankings based 
on chosen statistical confidence levels.  

For each test area where reference DEMs were available, one 
or more DEMIX sampling tiles were extracted. A DEMIX tile is 
an area covering approximately 10 km x 10 km in size and 
defined on a geographic latitude/longitude grid [5]. 

The preparation of the reference DEMs was performed in 
MICRODEM version 2023.2.5 [6]. Of the global DEMs under 
consideration, only FABDEM claims to be a DTM. The rest of 
the candidate global DEMs are closer to DSMs but most likely 
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fall somewhere between a true DTM and DSM [7]. Due to this 
ambiguity, all the global DEMs considered were compared 
against both reference DTMs and DSMs when available. 
MICRODEM was used to produce a wine contest GIS database, 
combining the tile characteristics, the evaluations table, and an 
opinions table with an initial set of tolerances. The implemented 
DEMIX wine contest database [8] includes 39785 opinions 
which are rows found within the database. 

 

Figure 2. A) Location of the 124 test areas. B) Distribution of DEMIX tiles over 
Las Palmas Island. The names of the test areas shown on the map A: 01 - Norway, 
02 - Oxford, 03 – Caen, 04 – Valonne, 05 – Vanoise, 06 - Trentino, 74 - Pyrenees, 
08 – Madrid, 09 - Ebro Delta, 10 - Almeria, 11 - Las Palmas, 12 – Canary East, 
13 - Redwoods, 14 – State Line, 15 - Canyon Range, 16 - Republican River, 17 
- Shenandoah, 18 - Blackwater, 19 - Chincoteague, 20 - Charleston, 21 - 
Pernambuco, 22 - São Paulo, 23 – Uruguay, 24 – La reunion. 

For all DEMIX tiles the following parameters were 
computed: Elevation Differences (ELVD), Slope Differences 
(SLPD), Roughness Differences (RUFD). The differences 
between the reference DEM and global DEM were always 
computed in the same manner: 

difference = globalDEM − referenceDEM 

where positive values indicate that the global DEM has a 
higher value than the reference DEM at a specific pixel. 

For each parameter, the quantitative assessments were based 
on the following criteria: Standard Deviation (STD), Average 
Deviation (AVD), RMSE, MAE, LE90. 

These quantitative assessments can be refined based on 
different slope and land cover classes: 

• Cliff – pixels having a slope > 50%; 

• Steep – pixels having a slope > 25% and < 50%; 

• Gentle – pixels having a slope < 25% and > 12.5%; 

• Flat – pixels having a slope < 12.5%. 

The land cover classification used was the Copernicus 
Global Land Cover Layers – Collection 2 [9]. 

The final step in the DEMIX wine contest ranks of the 
candidate global DEMs. The functionality to read the database 
and implement the statistical procedures required to produce the 
final rankings was made available through a Jupyter notebook 
[10]. 

The information provided in the database allows the user to 
directly select opinions most appropriate to their requirements. 
For each run, the Jupyter notebook computes the final rankings 
based on the chosen opinions including the required confidence 
levels to support the outcomes. Furthermore, the DEMIX wine 
contest Jupyter notebook provides tools to analyse outputs by 
creating graphics and figures to help understand the final, wine 
contest rankings. 

IV. RESULTS 
Figure 3 summarizes the results of wine contests applied to 

subsets of the database. The top rows show the overall ranking 
using all tiles and criteria based on the DTM and DSM reference 
DEMs. For this set of evaluations (ALL land type), the DTM 
winner is FABDEM and the DSM is COPDEM, both at the 95% 
confidence level. 

The DEMIX wine contest also associates statistical 
significance to the ranking and this is presented in Figure 3 by 
drawing a box around those global DEMs whose rank cannot be 
differentiated from a random result, i.e., the pairwise rank 
outcome does not pass the significance test. 

The subsequent rows have been grouped by DTM or DSM, 
land type filter (FLAT, GENTLE, FOREST, etc), and criterion 
(ELVD_RMSE, SLPD_LE90, RUFD_MAE, etc). Not only the 
order can change but also the number of ties and between which 
candidate DEMs the ties have occurred. This illustrates the 
power of the wine contest procedure in the context of the inter- 
comparison of global DEMs because depending on the user 
requirements, the ‘best’ DEM will emerge based on the set of 
chosen criteria, far from a situation of one-option-fits-all. 

To try and visualize the final ranking outcomes with a bit of 
context, Figure 3, columns B/D presents the same outcomes with 
the goal of showing how many times a DEM ranks higher/lower 
over the number of opinions. The output is the sum of the ranks 
for any particular DEM for each row in the opinions table 
divided by the number of opinions. The more times a DEM is 
ranked higher in the opinions table, the higher the ranking. In 
this case, lower is better. 

To demonstrate the effects that changing tolerances can have 
on the final rankings, Figure 3B/D presents the outcomes based 
on higher tolerances: 0.5 →  1.0 and 0.2 →  0.4. The 
increasing of the tolerances has had the effect of producing more 
ties between the different global DEMs. This is an important 
result for the inter- comparison of global DEMs.. 

V. CONCLUSIONS 
This paper presents the novel ‘DEMIX wine contest’, for the 

inter-comparison of digital elevation models which produces a 
final ranking with prescribed confidence levels based on given 
criteria. We applied the method to six global 1” DEMs: ALOS, 
ASTER, COPDEM, FABDEM, NASADEM, and SRTM. The 

inter-comparison was done using 15 criteria related to 
elevation, slope and roughness measures derived from reference 
1” DEMs. The wine contest provides final rankings with 
confidence level based on the choice of criteria and land type 
which demonstrates the powerful features of this method 
including the ability for the user to choose the most relevant 
criteria and areas. 

From an overall final ranking of the global 1” DEM inter- 
comparison, COPDEM, ALOS and FABDEM are clearly the 
frontrunners based on the chosen criteria and test areas. 

SRTM and NASADEM are distinctly in the lower half of the 
wine contest rankings indicating lower quality than the top three. 
If we limit ourselves to the tested criteria, the conclusion is that 
these global DEMs should no longer be used except perhaps to 
create composite DEMs or where elevations acquired around 
February 2000 are required. 

As many prior studies have shown, the ASTER DEM is 
clearly the lowest performer and should only be used with great 
care when no alternatives exist. 
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Abstract— Jupyter Notebooks are the most widely used system for 
shareable and reproducible research. Within the DEMIX 
Working Group, a Python Jupyter Notebook was developed for 
the analysis and visualization of the DEMIX Wine Contest. It can 
be run on a user's local machine or in the cloud using the Google 
Colab platform. The notebook, as well as auxiliary files, are 
available in GitHub. This article briefly describes its 
characteristics and usage. 

I.  INTRODUCTION 
Jupyter Notebooks have become the most widely used 

system for shareable and reproducible research [1-3]. It supports 
a variety of programming languages, such as Julia, R, JavaScript, 
and C, allowing the user to create literate programming [4] 
documents combining code, text, and results with visualizations 
and other rich media [5].  

Within the DEMIX Working Group [6], a Jupyter Notebook 
was developed for the analysis and visualization of the DEMIX 
Wine Contest. This article briefly describes its characteristics 
and usage. The reader is referred to [7] for the details of the 
DEMIX Wine Contest. In summary, the contest is designed to 
rank a set of Global DEMs based on a number of objective 
criteria (although subjective criteria could be used as well). Each 
criterion (such as RMSE) is used to rank the Global DEMs 
against a reference DEM. Then, a set of criteria is defined and 
the Friedman Test [8] is used to determine if the DEMs can or 
cannot be considered statistically different. If there are 
statistically significant differences among the set of DEMs, they 
are compared pairwise using the test by Dunn with Bonferroni 
correction [9] (a step called post-hoc analysis) and a final 
ranking is produced.   

The notebook, as well as auxiliary files, are available in 
GitHub [10]. 

II. CHARACTERISTICS  
The DEMIX Jupyter Notebook was developed based on 

Python version 3.10.x and the Pandas, qgrid, Numpy, Matplotlib, 
and Seaborn libraries [11-16].  

As the idea behind the notebook was to provide a simple 
“interface” to analyze the DEMIX Wine Contest data, the 
statistical and plotting functions were implemented in the 
demix_wine_functions.py file, although the user can alter some 
plotting options, such as colors or symbols. 

The notebook can be run on a user's local machine or in the 
cloud using the Google Colaboratory (Colab) platform. While 
running locally requires setting up a working python/jupyter 
environment, it allows for more flexibility in terms of files’ 
location. Running it in Colab requires installing a specific 
version of qgrid, and downloading external files from GitHub 
and Zenodo. All the instructions necessary for the user to run the 
notebook are included as comments within code cells or as rich 
text. 

III. USAGE 
As input the Jupyter notebook takes the Wine Contest GIS 

database [17] produced by MICRODEM [18]. The GIS database 
contains signed (mean, median) and unsigned values (RMSE, 
LE90, MAE) of the differences of elevation, slope and 
roughness between the Global DEMs and reference DEMs, but 
only the unsigned values are read for the Wine Contest. The 
signed values are used to produce plots that help the user to 
explore and understand the set of data being analyzed. 

Before exploring the database, the user can define the values 
for tolerances, which will impact the occurrence of ties between 
the DEMs in the rankings. 

A pandas dataframe will be created from the GIS database, 
and the qgrid library will provide an interactive spreadsheet 
widget (Fig.1). This widget allows the user to query the database 
by various properties, such as selecting between DTM and DSM, 
filtering by DEMIX tile, area or difference metric.  

It is imperative to select at least between DTM and DSM, as 
the analysis will not provide meaningful results if these two 
surface references are mixed.  

A new dataframe is created based on the selection in the 
spreadsheet widget. This new dataframe will then be passed to 
the function responsible for the Friedman Test. This function 
will return information about the tolerances, which filters were 
applied to the database and the initial result, stating if the DEMs 
have statistically significant differences among them, and if the 
user can proceed to the post-hoc analysis (Fig.2). 

The next step is the post-hoc analysis, and the function will 
return a table (Fig.3), where each row corresponds to one DEM, 
and the columns are:  

• rank – the final ranking, where lower is better; 
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Figure 1. GIS database rendered as a spreadsheet by qgrid. The selection between DTM and DSM is shown. 

 

Figure 2. Example of results of the Friedman Test. Filters include a selection 
of DTM as surface type, CLIFF and STEEP as land types. 

• sum of ranks – numerical value of the sum of all ranks 
for the DEM; 

• sum of ranks divided by number of opinions – this 
value might be used for comparing ranks made with 
different sets of criteria;   

• ties with – with which DEM there is a ‘tie’, that is, 
these DEMs don’t have a statistically significant 
difference. 

 
Figure 3 Example of the post-hoc analysis results, using the same filters as in 

Fig.3. Here SRTM and ASTER GDEM are tied in 4th place.  

 
The notebook also provides tools to analyze outputs by 

creating graphics and figures. The plots included in the notebook 
were intended to illustrate the publication [7], and the choice of 
predefined parameters of colors, symbols, and text annotations 
reflect this.  

Included in the notebook are a plot of correlation matrices, a 
customized scatterplot (Fig.4) of 60 wine contest ranks 
(including database filters on surface type, land type, land cover, 
geomorphometric indices, and two sets of tolerances), 
scatterplots of signed metrics (means, medians), unsigned 
metrics (RMSE, standard deviation), and of selected criteria per 
selected tiles (chosen as representative of the metrics’ behavior). 
All figures can be saved in common formats (e.g., .png, .svg). 
Note that the plots are not produced in ‘publication-ready’ 
formatting, as the author prefers to finalize the figures’ in an 
illustration software.  

 

IV. CONCLUSION 
This paper presented the DEMIX Wine Contest Jupyter 

Notebook, an open-source tool developed to provide an interface 
to explore the DEMIX GIS database and to generate Wine 
Contest results from several sets of criteria and tolerances. The 
notebook is available in GitHub. Indications of errors, bugs or 
suggestions to improve the code are welcome.  
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Figure 3.  Scatterplot of 60 Wine Contests ran with different sets of criteria and tolerances. Rectangles over DEMs’ symbols indicate a tie between them
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Abstract— Evaluation of the hillshade map provides a significant 
tool for evaluating the quality of digital elevation models. The 
DEMIX wine contest provides a statistically rigorous way to 
compare and rank DEMs, and applies the method to evaluate 6 
global 1 arc second DEMs. The wine contest used only quantitative 
criteria; we present an example using the qualitative hillshade 
map to verify that the wine contest works with either quantitative 
or qualitative criteria as DEMIX proposed. Our results verify the 
COPDEM and ALOS are much better than SRTM, NASADEM, 
and ASTER, and that those three should be retired with the advent 
of much better technology. We also highlight the challenges in 
getting enough judges to look at enough DEMs to approach the 
number of opinions possible with quantitative criteria. Qualitative 
test will probably remain a useful adjunct to much more numerous 
quantitative tests. 

I.  INTRODUCTION  
Digital elevation models (DEMs) represent a fundamental 

building block for work in science, engineering, social science, 
government, and the military. DEMs at 1” (arc second, about 30 
m) provide the best resolution freely available globally. The 
DEMIX group is working to compare and rank 6 of those DEMs, 
and created a database to support their work [1-4]. The DEMIX 
wine contest provides a framework for ranking DEMs and 
providing statistical significance for the results. An oenological 
wine contest frequently involves subjective assessments from 
experts, and the DEMIX group noted the ability to use subjective 
assessments for a DEM wine contest, but did not include any 
subjective criteria in their initial results.  We will use a 
subjective, visual criterion, show the challenges in applying it to 
a large number of test areas, and demonstrate that our application 
of the subjective criterion validates the DEMIX group findings 
[3] that COPDEM, ALOS, and FABDEM are demonstrably 
much better than SRTM, NASADEM, and ASTER. 

II. METHODS  
Nothing in the wine contest precludes subjective criteria tests; 

for demonstration purposes, during spring 2022 we 
experimented with showing 16 “experts” hillshades of the DTM 
from DEMIX tile [5] N28VW018B covering part of La Palma 

in the Canary Islands (Figure 1). The DTM was created by 
aggregating a source DTM from the national mapping agency, 
using the 2 m DTM to create a 1 second DTM to match the 
global DEMs. Using a Google form [6], we asked the “experts” 
to rank the subjective visual quality of the maps. In addition to 
the images, they had an animation cycling though the hillshades 
which highlights differences. They were not allowed to have ties 
in their rankings. 

During spring 2023 we repeated the contest with a larger 
number of “experts”, several different test areas (two in the 
western US, and one in the Italian Alps), and improved 
methodology. Our initial assumption was the students who 
constituted the bulk of our “experts” did not know anything 
about the 6 DEMs, and the original test included the DEM names 
(as Figure 1). The revised test removed the animation and the 
DEM names, and presented the DEMs in a different random 
order for each test areas. We will also run the contest during 
Geomorphometry 2023 in Iasi, both to demonstrate the method 
and to collect additional data. 

III. RESULTS  
The Google Form [6] provides the test administrator a figure 

online (Figure 2) showing a quick visualization of the results, as 
well as individual results from each judge which we do not need.  
The Form program downloads the results in a CSV file for 
import into a spreadsheet. We rearranged the results to get the 
alternative graphic (Figure 1) which we feel more closely shows 
the results. We also ran statistics (Figure 3), using the wine 
contest Jupyter Notebook [7,8]. Table 1 summarizes the scoring 
for each iteration of the contest, and Figure 4 shows the overall 
evaluation of the overall results.  

IV. DISCUSSION 
The results show a clear preference for COPDEM, 

FABDEM and ALOS; the results are quantitatively confirmed 
when using the wine contest statistics. The top three DEMs, and 
the bottom three significantly lower in the opinion of the judges, 
are the same as those from the DEMIX results [3] which relied  
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Figure 1. Hillshades of DEMIX tileTile N28VW018B, and the distribution of expert opinions for each of the 6 ranks. Low score in best. 
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Figure 2. Google Forms automatic display of survey results. 

 

 

Figure 3. Hillshades for the three additional DEMs used for the second iteration of the contest. 

Table 1. Wine contest average rankings for the 6 DEMs. Low score wins. 

Area DEMIX_TILE JUDGES NUMBER 
JUDGES COPDEM ALOS FABDEM NASA SRTM ASTER 

La Palma N28VW018B USNA 2022 17 2.47 1.94 3.35 3.71 4.59 4.94 
Canyon Range N39RW113J USNA 2023 24 2.13 2.71 1.92 4.67 4.63 4.96 
Canyon Range N39RW113J IUAV 2023 36 2.06 2.11 2.06 4.47 4.64 5.08 

Bolzano N46XE012B IUAV 2023 36 2.78 2.53 2.14 4.42 4.00 4.97 
Republican River N39UW098F São Paulo 2023 41 2.24 2.76 2.20 4.24 4.05 5.54 
Average all tests    2.27 2.39 2.51 4.27 4.61 4.95 
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Figure 4. Wine contest ranking and statistical significance matrix. “Ties with” means the DEMs are not statistically different in 

this test 

on over 20,000 quantitative opinions for 15 criteria using 133 
100 km² tiles from 19 areas spread over three continents. 

While the hillshade maps show elevation with color, slope 
and surface roughness, derivatives of elevation, dominate the 
visual display. For many users these are more important 
characteristics of the DEM, but as emphasized by the DEMIX 
group, users must select the comparison criteria that most 
closely match their requirements. 

For these areas, the difference between FABDEM and 
COPDEM are minimal and would be very hard to differentiate 
in a hillshade map, verified by the similarity in their contest 
scores. While NASADEM improved on SRTM for the elevation 
differences compared to the reference DEM, it generally has 
very little effect on the slope and roughness differences [3,4]. 
Since slope and roughness determine the hillshade, the judges 
did not clearly differentiate NASADEM and SRTM. 

V. CONCLUSIONS 
Other potential subjective assessments for DEMs include 

topographic profiles [9,10] or elevation-slope plots [9,12,13].  
DEM quality varies with land cover, land forms, and the slope 
of the terrain, so the test areas should cover a wide range of 
conditions. 

The design and implementation of an expert-based approach 
to criteria evaluation is not a trivial task. The approach requires 
a considerable effort to collect this data and does not easily scale 
to multiple test regions. The demands on the judges to evaluate 
multiple DEMs mean that we could never reach the hundreds of 
test areas, and over a dozen criteria, which are possible with 
automated quantitative criteria. In our first iteration the DEMs 
were always in the same order; for the second iteration, we used 
multiple test areas which always had the DEMs in the same order, 
but varied in not showing the same DEM first or last in every 
test area. This was the best we could do using Google forms. It 
would require custom programming to make an ideal survey, 
and an effort to collect multiple experts willing to judge a 
number of tiles. Custom programming would also allow judges 
to give ties. 

Despite the challenges, the test shows the power of the wine 
contest to evaluate DEMs, and that subjective criteria can be 
used. While the statistical validity of qualitative criteria may 
have caveats due to relatively small sample sizes, it provides 
another metric that users can evaluate in deciding which DEM 
they prefer to use, which in the end comes down to a value 
judgment. The mean of the differences to terrain parameters 
cannot be used in the wine contest, but means also provide 
information about where the candidate DEMs are low or high, 
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too steep or too flat, and too rough or too smooth. SRTM, 
NASADEM, and ASTER should be retired, and users should 
choose among COP, ALOS, or FABDEM, all of which are very 
similar to the reference DTM. 
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Abstract— We show the power of the DEMIX database and the 
reference DEMs created to support it to analyze the properties and 
characteristics of 1 arc second global DEMs.  This allows us to see 
why COPDEM and FABDEM are best, and how they improve on 
the others. The distributions of the differences from the reference 
DEMs in terms of elevation, slope, and roughness show that 
COPDEM and FABDEM consistently have the least bias 
compared the reference DEM, and the smallest standard 
deviations. 

I.  INTRODUCTION 
DEMs provide a critical base layer for almost all earth 

science studies. The DEMIX group is working to compare and 
rank 6 global DEMs: COPDEM, FABDEM, ALOS, 
NASADEM, SRTM, AND ASTER [1,2]. We use their database 
[3] and reference DEMs [4] to demonstrate preliminary results 
of the rich potential to mine those datasets. Two other papers at 
this conference have examined the ability to use qualitative 
evaluation of hillshade maps to rank DEMs [5], and to look at 
the difference maps to study the spatial patterns where ALOS 
and COPDEM differ [6]. 

II. RESULTS  
The wine contest [1] cannot use signed results because their 

choice of statistics requires that the values be ranked from low 
score (best) to high score. They commented that signed values 
like the mean and median provide additional context, which we 
will explore with Figure 1 which shows the mean, median, mode, 
and standard deviations of the difference distributions of 
elevation, slope, and roughness for all 236 tiles in the database.  
This summarizes the individual difference histograms for each 
tile. It allows the following generalizations: 

• The difference distributions for COPDEM and 
FABDEM, and to a lesser extent ALOS, have a very sharp peak 
close to 0, indicating very little bias compared to the reference 
DTM. The other DEMs have much smaller and flatter peaks; for 
many it is hard to find a mode. 

• NASADEM has little bias from the reference DTM 
only for elevation differences, where it is much better than 
SRTM. 

• NASADEM does not improve on slope and roughness 
compared to SRTM.  

• ASTER is clearly the worst performer. 

Overall Figure 1 supports the DEM ranking from the wine 
contest [1], but provides insight into how the DEMs differ. 

Figure 2 shows where each of 6 DEMs is tied for best, with 
the tiles sorted by average slope and percent forest, using three 
criteria of the 15 used in the wine contest [1]. Supplementary 
figures on Zenodo show 7 land characteristics with 6 criteria. 
There are 236 opinions, one per tile for each criterion with the 
DTM as reference and 134 opinions for the DSM as reference.  
There can be 1 to 6 DEMs tied, and the figure suggests where 
each is best: 

• Fewer tiles have a DSM, which must be factored into 
looking at the figure. 

• COPDEM and FABDEM are almost always at the top, 
FABDEM more often when compared to a DTM and COPDEM 
when compared to a DSM.   

• Based on a limited number of very steep and very 
rough (shown on a supplementary figure) tiles, ALOS may out 
perform the other DEMs in that type of topography. 

• NASADEM and SRTM perform best in low slope tiles, 
and in unforested tiles and some tiles with about 70% forests.  

• ASTER is tied for first for only 6 tiles, two of which 
are very flat coastal DEMs in which none of the 1 arc second 
DEMs performs very well. 

Inspection of the difference maps reveals aspects of the 
DEMs that do not always show up in the statistics. For example, 
Figure 3 shows linear anomalies with the ALOS DEM showing 
where images were merged; we have seen the same patterns 
elsewhere with ALOS and notably have not seen similar 
artefacts with COPDEM. The scale of these anomalies makes 
them hard to see on individual DEMIX tiles, and is one reason 
we prefer to work with larger areas with many DEMIX tiles. The 
other, and perhaps bigger reason, is that the geographic tile 
boundaries do not line up well with the UTM boundaries of the 
source DEMs used to aggregate the reference DEMs, and it is 
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much easier to get data for an area and then extract the individual 
tiles on the fly.  

IV. CONCLUSIONS  
We foresee several ways that the DEMIX wine contest and 

its associated database will be extended (1) adding more tiles, 
particularly in mountainous areas, (2) adding new criteria, and 
(3) looking beyond the numerical rankings to understand what 
causes the differences, and when each DEM performs best.  
We do not expect that the relative rankings of the DEMs will 
change much, but that understanding where ALOS performs 
best could lead to improved DEMs in areas where COPDEM 

underperforms; understanding the difference between optical 
and radar sensors might lead to better composite DEMs. All of 
these DEMs are composites, using additional data to fill voids, 
and FABDEM removed trees and buildings from COPDEM 
very well in creating the best (and only) DTM in the group. 
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Figure 1. Summary statistics (mean, median, mode, and standard deviation) for the difference distribution compared to the 

reference DTM for 6 global DEMs and 236 DEMIX tiles. Graphs of the difference distributions are available online [7]. 
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Figure 2. Tile by tile results where each DEM is ranked best within tolerance, for three parameter and both DSM (blue background) and DTM (brown 
background). On the left side the tiles are sorted by average slope of the tile in percent, and on the right by how much of the tile is forested. Additional results are 

with the paper online. 

Figure 3. Elevation differences, ALOS minus reference DTM for the Republican River test area in Kansas. 
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